

Zeynep Çelik-Butler, and Donald P. Butler, Electrical Engineering & NanoFab University of Texas at Arlington

Multi-Sensory Arrays on Flexible Substrates

Sensing:

- •Infrared radiation (temperature)
- •Pressure/tactile
- •Flow
- •Biochemical (for future)

Two-die smart skin applied to the little finger. The flexible skin (right) contains 384 infrared microsensors.

1x10 array of infrared microbolometers (40x40 μm²) before encapsulation

Motivation for a "Smart Skin"

Evolution in robotics is demanding increased perception of the environment.
Human skin provides sensory perception of temperature, touch/pressure, and air flow.
Goal is to develop sensors on flexible substrates that are compliant to curved surfaces.

Advantages of Flexible Substrates

- Conform to underlying object.
- Batch fabrication potential for low cost.
- Enable applications on complex geometries.
- Multilayer construction.
- Integrated electronics in the future (TFTs).
- Expected market for electronic applications on flexible substrate, 0.8 Billion yearly*

*Electronic Trends Publications

From S. Wagner, Princeton University

Lightweight • Rugged • Foldable

Direct Printing of Electronics

UTA NanoFab

Applications: Wearable Sensors

Sensitive Skin

Skin-like Material w/ TFTs

(Motorola)

Electrotextile

(Givenchy)

Smart Glove

Soldier of the Future

Wearable Body Monitoring Systems

Smart Bandages, University of Rochester

- Biological sensing and chemical sensing techniques with simple alerts.
- Monitoring of infants at-risk, elderly, employees working in hazardous environments.
- Multi sensing techniques integrated into fabric.

Smart Shirt, Georgia Tech: Current technology. Discrete sensors: lumpy, uncomfortable, inconvenient

Artificial Skin for Robotics

Sensitive prosthetic devices

Roomba, the vacuuming robot, needs to "feel".

Cochlear implants for full spectrum hearing restoration

Minimally invasive surgery with instruments that "feel".

Artificial Skin for Robotics

(Martinet)

Lockheed Martin MicroSTAR

- Micro Air Vehicles
- Microbats
- Multi sensing techniques integrated into autonomous flying objects..

 Integration of microactuators and microsensors on a flexible substrate

MAV - CalTech/UCLA

Multi-sensory Arrays on Flexible Substrates

Sensing:

•Infrared radiation (temperature)

•Pressure (tactile)

•Flow

•Biochemical (for future)

Two-die smart skin applied to the little finger. The flexible skin (right) contains 384 infrared microsensors.

A piece of "Smart Skin" developed at NanoFab-UTA. There are over 1,000 sensors on this piece of skin.

•Encapsulate microbolometers in a vacuum cavity on the no strain plane with polyimide superstrate.

•Integrate flow sensors and pressure/strain sensors.

Fabrication

(Sealed vacuum cavity)

Fabrication of encapsulated devices

Partially micromachined device Fully micromachined device

SEM graph of an unsealed micromachined device

Fabrication of encapsulated devices

Sealed device

SEM graph of sealed device

SEM graph of cross section of vacuum cavity

Modeling of Induced Stress

Al₂O₃ Stress Analysis

UTA's Tactile Sensors on Flexible Substrates

- <u>**Top Right:**</u> ANSYS® simulation of response of a pressure sensor to 50kPa normal pressure.
- <u>**Top Middle:**</u> An ANSYS® simulation of an integrated thermal/tactile sensor on a polyimide. The colors indicate the stress due to the applied pressure.
- <u>**Top Left:</u>** An ANSYS simulation of a loaded integrated sensor.</u>
- <u>Left:</u> Cross-section of a single integrated thermal/pressure sensor. The Smart CPR system will be an array of these pixels.

Sample Skin Bending-Different Sensor Orientations

00

NanoFab

45°

Different orientations of DV-UL-P for skin bending 0° , 45° and 90°

Pressure Sensors on Flexible Substrates

We are in the process of developing pressure/tactile sensors on flexible substrates.

