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| Current BJT low-frequency noise models
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Importance and motivation

Limitations in existing noise models:

= Only one single noise source in base current: S;g=KF.IgAF.

= Noise in base current dominant only for higher base series
resistance.

= Does not include any geometry, temperature or process
parameter.

= Noise in collector current and internal resistances are neglected.

= Noise in collector current contributes at lower base series
resistance.

= Noise from internal resistance contributes at higher bias current.

Research goal:

= To model all possible noise sources in advanced bipolar transistors:
= Noise in base current, collector current and internal resistances.

= Developing physics based scalable equations for the noise sources:

= Incorporating geometry, temperature and process dependant
parameters.

= Writing computer source code for device and circuit analysis CAD
tools to incorporate all possible noise sources in BJT.
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Advanced bipolar technologies under
investigation

= Polysilicon emitter bipolar transistors:
= 2" generation BICMOS technology, Texas
Instruments Inc.
= NPN and PNP transistors.
« Variable size, variable IFO thickness.

= SiGe heterojunction bipolar transistors:
= 1st generation BiCMOS technology, National
Semiconductor Corporation.
= NPN transistors.
= Variable size, variable design rules.
= Variable doping in base and collector.
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Noise in polysilicon emitter bipolar transistors:
=« Experimental setup.
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|| Collector-base measurement setup
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| Collector-base measurement
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Dominant noise source
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Calculated S,/Sys considering S;; contribution dominant closely
matches experimental S,./Syg; SIB contribution dominant.
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Noise in polysilicon emitter bipolar transistors:

S;g modeling:
= hoise mechanisms, effect of bias, geometry and IFO.
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| Area dependence of S;; in NPN transistors
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Internal emitter resistance and ideality
| factor of base current

0.7x100 pm2 NPN, thickest IFO, Rg=1MQ
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Physical origin of S,

= Base current dependence
L diffusion fluctuation in emitter.
Sy  1Bayy — >

T lzftun mm)> tunneling fluctuation in IFO.

= recombination fluctuation in emitter-
s, wt? ( base space charge region.
recombination fluctuation at spacer
oxide interface.
= Emitter perimeter dependence
= Noise source distributed homogeneously around the emitter.
= Recombination fluctuation at the spacer oxide interface.
= Emitter area dependence

= Noise source distributed homogeneously underneath the emitter.
= Diffusion fluctuation in emitter or tunneling fluctuation in IFO.
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| Physical origin of S;gz (cont.)

SI + .

=8 + 8
B Ip diff Ip tun Ip rec

= Unity ideality factor of /; =) negligible Ip . .

mmmm)> negligible 57, .

S; =S +.5
Ip IBdW IBtun
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Diffusion and tunneling
| fluctuation component of Sy

0.7x100 pm2 NPN, medium IFO, Rg=1MQ
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Area dependence of tunneling
| fluctuation of S;;z in PNP transistors

107 . . .
Tunneling-fluctuation source
homogeneously distributed
10° L underneath the emitter.
=
LL
X Smaller device-dimension
10° severely affected by lateral
diffusion and mask undercut;
effective emitter area
Thickest IFO considered.
10'10 1 L L
107 10° 10" 10°

Emitter area: AE (umz)
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| Diffusion fluctuation in S,

a
Tmd In p(0) + rl In pxz) o, : Hooge parameter in mono-Si
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Tunneling fluctuation in S

S -2
ﬂ= 1+s 1 +Wm+WP Stmn
I3 \'s, D, D 2
B m m V4 Umn

tan tunneling probability
of minority carriers

t., fluctuationin ¢,

m"  effective mass of
minority carriers

q electronic charge

k Boltzmann constant

L IFO thickness

Stun m’" qkTL’ tand
2

2 W ontne, Af

tano

oxide permittivity

barrier height for the
minority carriers

modified Planck’s
constant

area of IFO

loss tangent of the
oxide
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| Scaling effect on S

AF for S;g in PNP transistors

S; =KF-13F
Relative AF B
0.7x100 0.7x0.7
IFO thickness m? m2 S; =8 + .5
. ( HmM2) ( HmM2) Ip IBdiff Ig,
thickest 1.12 1.89
medium 1.23 2.09 =KFp-Ig+KFr - 1%
thinnest 1.01

= Diffusion fluctuation dominant in large (0.7x100um2) devices.

= Tunneling fluctuation dominant in small (0.7x0.7pum?2) devices.
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Scaling effect on S;z in PNP
| transistors with thickest IFO
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| Emitter plug effect in smaller device

Large device small device

Poly-Si emitter d <d,

oxide I d

base

= Thicker polysilicon in smaller transistors.
= Lower dopant concentration; shallower junction.

= higher chance for minority carriers from base to reach and tunnel
through the oxide interface; tunneling fluctuation dominant.

= FLUORINE EFFECT: fluorine enhances oxide break-up.

= lower fluorine (from BF,) concentration causes less oxide
breakup in smaller PNP devices; increased tunneling:

(no fluorine in the transistors studied here)
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Perimeter depletion effect

d,<d,

Poly-Si emitter

oxide

base

Polysilicon surface almost ‘Jerpendicular to wafer surface
at emitter window sidewall.

Reduced doping concentration in the perimeter region.
Shallower junction close to emitter window perimeter.

An overlap of the emitter-base space charge region with
poly-mono silicon interface might occur close to
perimeter.
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Perimeter depletion effect in smaller
| transistors

Perimeter/area vs. emitter area
5.00

4.00 »

3.00 {¢

Perimeter/area

2.00 - L 4

1.00

0 20 40 60 80 100 120
emitter area (um?)

= For smaller transistors
= perimeter/area ratio increases sharply.
= non ideal peripheral component of base current increases.
= fluctuation in non-ideal base current might become significant.
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Effect of IFO on DC characteristics of
0.7x100pum2 NPN transistors

Current (A)
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_— Ic (thickest IFO)
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—IC (medium IFO) ¢
_— IB (medium IFO)
—_— Ic (thinnest IFO)
—_— IB (thinnest IFO)

thickest IFO

1 medium IFO
7 thinnest IFO

03 04 05 06 06 0.7 0.8 0.9

Vv
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s V)

= IFO increases the current gain significantly.
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Effect of IFO on DC characteristics
of 0.7x100um2 PNP transistors

Current (A)

Current gain

10 I I 1 I 1 1 1 1 I I 1 1 1 1 1 I I I

o [ |~ (thickest IFO) 1 thickest IFO ]
10" | | ——1_ (thickest IFO) T t':?d'""; :Eg 160

, [~ (medium IFo) - [nnes
10™ | ——1_ (medium IFO) Ie

B

. [ | thinnest IFo) / - 120
10 —I_ (thinnest IFO) .
10° . 80
10% } -

100 : : 40
10-12 1 |- 0
03 04 05 06 06 07 08 09 103 04 05 06 06 0.7 08 09 1
V__(V
ag (V)

No significant improvement in current gain with increasing

IFO thickness.

UTA Noise and Reliability Laboratory




Effect of interfacial oxide on S,
iIn NPN and PNP transistors

S, (A’/Hz)

0.7x100 pm2 NPN

10" . . 10™ .
B thickest IFO B thickest IFO | |
4 medium IFO 4 medium IFO | |
102 Lk | o thinnestiFo - 102 A thinnest IFO . mm -
.I
|
107 | . N 107 . -
a® = .
.
u I. s ‘Q
m
102 | mu? i w1072 . ]
u * AA *
A
o and
TS A
102} At i 102 uA i
.
.
102 L2 - ! 10% L -
8 7 6
10°® 107 10° 10° 10 10 10
1 (A) I (A)

0.7x100 pm2 PNP

= IFO increases S;g both in NPN and PNP transistors.
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Difference in the effect of IFO
in NPN and PNP transistors

0.7x100um? transistors

Sy, =KF-1g"
Device type AF
PNP ~ 1 ~
S1p ®SiByy 518,
NPN ~ 1.5 = KFyy - IB + KFy - IB?

= In PNP, diffusion fluctuation in mono and poly-silicon
emitter dominates; less effect of IFO.

= In NPN, both diffusion fluctuation in mono and poly-
silicon emitter, and tunneling fluctuation through IFO

contribute.
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Physics behind difference
in NPN and PNP transistors

Hole barrier height larger than electron barrier height at
interfacial oxide:

= minority carriers (holes) severely suppressed in NPN;
significant current gain improvement.

= minority carriers (electrons) not suppressed significantly in
PNP; little current gain improvement.

Effect of fluorine:
= fluorine accelerates oxide break-up.

= fluorine from emitter dopant BF, in PNP creates more oxide
breakup; reduced tunneling and increased diffusion through
broken oxide.

Increased oxide breakup and faster diffusion of boron makes the
emitter deeper in PNP:

= Increased recombination-base current, reduced current gain
improvement.
= higher diffusion fluctuation in larger monosilicon emitter
region.
Different oxidation rate of the base material could create different
IFO thickness for NPN and PNP transistors on the same wafer.
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Noise in polysilicon emitter bipolar transistors:

Sic modeling:
=« nhoise mechanisms, effect of bias and IFO.
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| Effect of interfacial oxide on S,

2
0.7x100 pm“ NPN 0.7x100 pm2 PNP
107 r r 107"% .
[
B thickest IFO: AFC=1.54 . u
107 } ¢ medium IFO: AFC=1.74 [ ] - 107" L - - 4
A thinnest IFO: AFC=2.01 g ™ [
]

1077 L [] i 107 L [ ] i
—_ u —_ u A
T " * T .
‘<« 10"} . - ‘<« 10"} N .
7] L 2 72 A

10"} . M4 - 10" | 1

“
L 2 ; . =
02| N A | 10| a W thickestIFO: AFC=172( |
. A medium IFO: AFC=1.71
L 4
102" . ! 10 '
10°° 10° 10°* 10° 10° 10* 10°

| (A) o (A)

= IFO increases S;c both in NPN and PNP transistors.
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S;c modeling

Some researchers assign the same
SIC =SICN "‘SICD origin of S to S,.
2 s, =2 is merely an amplified S
=KFy-Ic"+KFp-I¢ le = g2 y P 1B

0.7x100um2 PNP, thickest IFO

1.E-05
carrier transport determined

by electric field in base Sy

(2K-1)
oC IC
collector junction.

c

h22 oC Ig 1.E-06
Hooge type fluctuation at the
collector side of base- K21

collector junction.

output conductancez(ohm')

1.E-07
1.E-05 1.E-04 1.E-03

Ic (A)

Number fluctuation in S;c requires further investigation.
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| Diffusion fluctuation in S,

n(0) vg+D/Wpg
Sic,, _qDa ln( n(0) nWg)  DIWpg

I 2 n(Wp)

¢ 2 B U saturated drift velocity
X
c
c
o mono- oxide Poly- metal
'ﬁ collector base silicon silicon contact
1)
8 |
'SE) a, D
S

W;g 0
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Noise in polysilicon emitter bipolar transistors:

Svr modeling:
« Collector-emitter measurement setup, effect of bias and IFO.
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Coherence

Effect of bias on coherence in NPN
| and PNP transistors

0.7x100 pm2 NPN, thickest IFO, R¢=1MQ 0.7x100 pm2 PNP, thickest IFO, R;=1MQ
T T T T 1.2 T I I '
1 k - 1
0.8 - 0.8 |
cu
o
o
~ 0.6}
0.6 (increasing bias current) 2
8 a: IB= 301 nA
0.4 | a: 1= 72nA 04 | b: 1.=493 nA
b: 1 =264 nA c: 1.=1.09 pA
c: 1 =384 nA d: 1.=1.48 uA
0.2 |- d: |z=546 nA 0.2 | e: 1.=1.99 pA
e: IB=760 nA
0 1 1 1 0 0 I1
10° 10 10> 10°  10*  10° 10 10
Frequency (Hz) Frequency (Hz)

= Coherence decreases with increasing bias in NPN transistor.
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Effect of varying base bias resistance
| (Rs) on SV

0.7x100 pm2 NPN, thickest IFO, IB=384nA

1 1 1 1 ] L] ] ]
10° 10" ‘ ecreasing R -
§ s
107° | 13 RS=1M
10 RS=100K -
— — ——— RS=50K
N o N ———RS=10K
NE NE 1 Background noise
> S 10 i
g 107 i
» 10-15 i
10" ‘
10 107 tedrivArsii
A7
10™ 10
10° 10’ 10 10° 10* 10° 10° 10’ 10 10° 10° 10°

Frequency (Hz) Frequency (Hz)

= Syc does not decrease any more for Rgsmaller than 1 kQ.

= S,z becomes comparable to system background noise for Rg
smaller than 10 kQ.
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| Collector-emitter measurement setup

1K
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Dominant noise source in
| collector-emitter measurement

0.7x100 pm2 NPN, thickest IFO, R¢=100Q

10° .
> > D> D> 11
>
10* | g
T
0 - Unity coherence.
w ©
> = -
@ 10°} . g One single dominant
- c -
w = 05 o noise source:
@® measured [
@ S contribution dominant ol Em -g P
L= : Sic OF Sy,?
10° | ¢ 2 s &2 2 86
| SIB contribution dominant
A SVr contribution dominant
10’ ! 0
107 10°® 10°

I, (A)
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S;c In collector-emitter measurement

0.7x100 pm2 NPN, Rs=100Q

B thickest IFO : AFC=3.21 AFC
10" E | Ao mediumIFO: AFC=3.58 " - SIC =KFC- IC
| |
. AFC =3.05~ 3.58
E 10" } . A .
= = AA .
so A no physical
w 107} _ WA ' explanation for
such high current
07 | . A | dependence:
“ SPURIOUS?
10-18 1
10 107 107
. (A)
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Effect of interfacial oxide on S,

0.7x100 pm?2 NPN, R;=100Q

S (V%/Hz)

B thickest IFO
10" L | A mediumIFo Em -
Sy =85 +8
0 | | V V,,e V"b
> 10-13 - - SV NSV
r l‘e
_ 72
10" } ] =1k -5,
10™ !
10 107 107

L (A)
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Effect of internal resistance in
| collector-emitter measurement

0.7x100 pm2 NPN, thickest IFO

Base current (A)

Collector-base measurement, RS=1MQ Collector-emitter measurement, RS=100Q
1.E-03 1.E-03
exponential fitted line exponential fitted line /
1.E-04 | (n=1.12) > 1.E-04 } (n=1.1) /—
1.E-05 } 1.E-05 | /
1.E-06 |} < 1.E-06 |
1.E-07 } S 1.E-07 }
t —> «—
1.E-08 } 3 1.E-08}
@ noise
1.E-09 } & 1.E-09 } measurement
—_— — m region
1.E-10 } - 1.E-10 |
noise
1E11 } measurement 1E11 |
region )
1.E-12 1.E-12
04 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1
Vee (V) Vee (V)
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Tunneling fluctuation
| through interfacial oxide

fluctuation in
S IBT_ minority carrier

tunneling

base mono- oxide Poly- metal

silicon silicon contact

fluctuation in
majority carrier - S r
e

tunneling
S, . * 3 ¢ . tunneling probability of the
S"e _ Imj _ M qkTL tand " majority carriers through IFO

fluctuationin 7, ;

St !

e tai Vi lmeg Af
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| Interfacial oxide thickness

Inconsistency:
uncertainty in loss
tangent, mass and
potential barrier of

Relative Emitter area | interfacial oxide thickness (A) from

IFO thickness (Hm?) minority carrier | majority carrier

fluctuation (S;gy) | fluctuation (S,,.)

PNP_| NPN NPN the carriers at oxide
0.7x100 14.50 4.08 interface.
thickest 0.7x10 16.90 Vh — 0363V Ve —0.097V
0.7x2.8 14.50 « .
0.7x0.7 11.00 my=08Lm, — my =1.08m,
medium 0.7x100 413 11.30 2.26 tand obtained from
0.7x0.7 8.78 Kleinpenning et. al,
thinnest 0.7x100 2.70 IEEE Trans. on Elec.
0.7%0.7 2,81 Dev., vol. 42, 1995.

v, as high as 1.8V and r, as high 1V found in literature.
tand unique for each sample.
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Noise in polysilicon emitter bipolar transistors:

Computer codes.
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| Experimental and Simulated data

TI NPN
] ] Noise Compression
Simulation results vs. Measured 10° TTTI T T T T T T 1T T T 1T T T TTTTT1g
—~ = Rbext = 100k
: _ E 107 = Rbext = 10K0
Simulated Noise vs Lab = - Rbext = 1KQ
1 > = Rbext = 1000
000.0 5 . . Rb,ext = 10
= 10
=
<
100.0 M \-::J 10"3
[ N\‘\‘\A\‘\‘ :}- -~
:E \\\\“‘\Siqlmatedwith 107 T O 1 1 DS VO B B 1 AR W 1 ) ) I 1 LA v L1l
. mndﬂmki‘;m:_ 1 10 100 1000 10000 100000
s )
8 \\\ \-\_\x\\ Frequency {Hz) \
1.0 \\‘\‘\.\\‘
Noise data measured at Tl
M—Q—H—{V@%%%%%#%% 400000009
Simulated with
o.‘|1.E+01 eXIsqlglg model 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Freq (Hz)

|+ Production Models —=— THS4271 Lab —a— Spot Models
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Computer source code

Existing BERKELEY SPICE source code has been
modified.

= Source code written at Texas Instruments Inc. by
Douglas Weiser.

= S;. and Sy, have been added to the existing noise
model in addition to s, .

= An area scaling factor has been added to the
equations to make the noise models scalable.

The modified BERKELEY SPICE source code is available
to the SRC (Semiconductor Research Corporation)
member companies (TI, Intel, IBM, Motorola, National
Semiconductor Corporation, AMD, etc.)
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Noise in SiGe heterojunction bipolar transistors:
= Dominant noise source.
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Device structure under investigation

dielectric isolation SiGe epi-SiGe poly interface

n+ poly Si emitter

p+ SiGe poly p+ SiGe poly

shallow trench i shallow trench
: . implanted
collector

DTI : DTI

oo N LRI S : T
trench trench

isolation) X = emitter-po|y over|ap isolation)
y = composite enclosure of poly
z = DTI enclosure of composite

Transistors described as x-y-z; e.g. SIC:25-10-25.




Dominant noise source

10° . 10° .
SIC:20-20-40 SIC:20-20-40 411
I I e
10* | ® 6 0000 0 o - )
°
—_ 5 E E E EENE E g 108 E
N G 10°f =)
10° | gt 8 o _ = =
g v v 8 ® base series resistance | | ¢ &
Qo H 5 ® (A input resistance R
> - o
»n 102 L | ® experimental | g : ® coherence at 10 Hz 3
W S _ contribution dominant 2 104 F A 404 o
¢ S _ contribution dominant A . R 3
10" | A Sw contribution dominant | A . {02
A A A4raa., A
100 - 1 - . 103 L 0
10° 10° 10° 107 107° 107
I (A) | (A)

= Calculated S, /Syg with S;z contribution dominant closely
matches experimental S,./Sys ; S;g contribution dominant.
= Iincreases mmmm)> r,decreases mmmm)> coherence increases.
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Noise in SiGe heterojunction bipolar transistors:

Effect of selective collector implant.
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| Selectively implanted collector (SIC)

Higher
collector
doping

Higher collector- ‘ Lower fmax
’ base capacitance

Retarded Kirk- ‘ .
effect Higher /7

Higher ST Reduced

ﬁ::lelg::r:éy ‘ and reduced ‘ base-width by
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| Effect of selectively implanted collector
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= SIC retards Kirk-effect mmmml) higher B for wider range of bias.
= No degradation in noise.
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Noise in SiGe heterojunction bipolar transistors:

Effect of higher extrinsic base implant.
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B

Effect of higher extrinsic base implant
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= Higher gain for higher extrinsic base implant is
possibly due to relative changes in Ge profile.

= No degradation in noise.
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Noise in SiGe heterojunction bipolar transistors:

Effect of SiGe epi-SiGe poly interface.
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Effect of SiGe epi-SiGe poly interface

10 250 107 . .
L |—SIC:20-10-25
10% } —SIC:20-20-40 B SIC:20-20-40
200 10'18 | | ® SIC:20-10-25 [ | i
[
10° N -
150 .% °© 40" |
10°® . B
: o
10 o o
7]
- 50 -21
10" ——noise measurement 107 ]
region
10-14 0 10'22 1 1
0.2 0.3 04 05 06 0.7 08 09 1 107 107 10° 10
Ve V) L (A)

= No significant impact on DC characteristics.

= No degradation in noise; boron implantation in extrinsic
base passivates the interface-defects.
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Noise in SiGe heterojunction bipolar transistors:

Effect of emitter-poly overlap.
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| Effect of emitter-poly overlap

SIC:20-10-25

107
10"
N
L
> 10
(&)
>
? 0
— 1, =0.5pA
10.14 i —|B= 1pA
—1_=4pA
10-15 1 1
10° 10 102
Frequency (Hz)

10°

(VAHz)

SVC

UTA

SIC:10-10-25
10-1° ~1/f .
10-11 i
10-12 L
10'13 - _IB = 0.5uA -
— 1 =1uA
10} —I1_=4uA i
—1_=10uA
B
107 : :
10° 10" 102
Frequency (Hz)

= Significant g-r noise for smaller emitter-poly overlap.

= g-r noise diminished at higher currents in comparison to

increased 1/f noise.
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UTA
| Effect of emitter-poly overlap (cont.)
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= Higher non-ideal base current for smaller emitter-poly overlap.

= S;; deviates from ~I;2 dependence for smaller emitter-poly
overlap.
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Noise in SiGe heterojunction bipolar transistors:

Physical origin and modeling of S,
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Physical origin of S,
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= All except smaller emitter-poly overlap ) n,<1.6, AFz2.
= Smaller emitter-poly overlap —> n,>3, AFx1.
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| SIB m0d8|
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| Noise from Surface recombination current
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| S;g model for smaller emitter-poly overlap

From intrinsic From surface of
E-B junction E-B junction AF ~1
g
SIB =KF -Ip
SIB = +
4
NHyA
KTAC,
Nj : Oxide slow state A i Attenuation
volume density. tunneling distance.
A : Area of surface Csc * Surface capacitance
region. per unit area.
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| Separation of S;; components

Is(A)

S1, = KFy -Iév +KFy - 15

S

) I
1 B
— B — kF{ =Y + KF,
I’ I’
BS BS

N2 =9.65x1015 ~ 3.08x1016 /eV/cm3.

Published values = 1017 ~ 1018 Jev/cm3.

) Uncertainties in ] and Cjg,. .
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Conclusion
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| Conclusion

Polysilicon emitter bipolar transistors:

= The base current fluctuations dominate at
relatively high external base resistance values.

= Collector current fluctuations contribute when the
external base resistance becomes comparable to
or less than the input resistance.

= Fluctuations caused by the internal emitter
resistance take over for high currents with small
base resistance.

= From the dependence of noise magnitude on the
geometry and temperature, fluctuations in the
non-ideal base current was neglected.
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| Conclusion (cont.)

= S;g originates from diffusion fluctuations of minority
carriers in poly and monosilicon emitter, and
tunneling fluctuations of minority carriers at IFO; S,
from diffusion and number fluctuations of minority
carriers in base, and S,,. from tunneling fluctuations
of majority carrier at IFO.

= Diffusion fluctuations dominate over the tunneling
fluctuations for larger devices; tunneling
fluctuations dominate over diffusion fluctuations for
the smaller ones.

= IFO increases the current gain significantly in NPN;
both tunneling and diffusion fluctuations contribute.

= No significant improvement with increasing IFO
thickness in PNP; diffusion fluctuations dominant.
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| Conclusion (cont.)

SiGe heterojunction bipolar transistors:
= Selectively implanted collector causes higher current
gain for wider range of bias; no noise degradation.

= No significant effect of SiGe epi-SiGe poly interface
and higher extrinsic base implant.

= Severe impact of smaller emitter-poly overlap:

= increases non-ideality of the base current; trap
assisted tunneling current due to parasitic BJT.

= g-r noise at lower bias currents.

=« At higher bias currents, fluctuations from trap
assisted tunneling current contribute.

= For all transistors except smaller emitter poly
overlap, noise originates from intrinsic E-B junction.
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