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Outline
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n Limitations in existing noise models.
n Importance and motivation of research. 

n Noise in polysilicon emitter bipolar transistors:
n Experimental setup.
n SIB modeling:

n noise mechanisms, effect of bias, geometry and IFO.
n SIC modeling:

n noise mechanisms, effect of bias and IFO.
n SVr modeling:

n Collector-emitter measurement setup, effect of bias and IFO.
n Computer codes.

n Noise in SiGe heterojunction bipolar transistors:
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n Effect of higher extrinsic base implant.
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Current BJT low-frequency noise models

n Gummel-Poon:

n VBIC – Flicker noise due to IBE, IBEP

n MEXTRAM: 

n MODELLA:
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Importance and motivation

n Only one single noise source in base current: SIB=KF.IBAF.
n Noise in base current dominant only for higher base series 

resistance.
n Does not include any  geometry, temperature or process 

parameter.
n Noise in collector current and internal resistances are neglected.

n Noise in collector current contributes at lower base series 
resistance.

n Noise from internal resistance contributes at higher bias current.

n To model all possible noise sources in advanced bipolar transistors: 
n Noise in base current, collector current and internal resistances.

n Developing physics based scalable equations for the noise sources:
n Incorporating geometry, temperature and process dependant 

parameters.
n Writing computer source code for device and circuit analysis CAD 

tools to incorporate all possible noise sources in BJT.

Research goal:

Limitations in existing noise models:
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n Polysilicon emitter bipolar transistors:
n 2nd generation BiCMOS technology, Texas 

Instruments Inc.
n NPN and PNP transistors.
n Variable size, variable IFO thickness.

n SiGe heterojunction bipolar transistors:
n 1st generation BiCMOS technology, National 

Semiconductor Corporation.
n NPN transistors.
n Variable size, variable design rules.
n Variable doping in base and collector.

Advanced bipolar technologies under 
investigation
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Dominant noise source

0.7x100 μm2 NPN, thickest IFO, RS=1MΩ 0.7x100 μm2 PNP, thickest IFO, RS=1MΩ
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n Calculated SVC/SVB considering SIB contribution  dominant closely 
matches experimental SVC/SVB; SIB contribution dominant.
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Area dependence of SIB in NPN transistors

10-23

10-22

10-21

10-20

1 10

I
B
= 0.1mA

I
B
= 0.2mA

I
B
= 0.3mA

I
B
= 0.4mA

I
B
= 0.5mA

I
B
= 0.6mA

S IB
 (A

2 /H
z)

Emitter Area (µm2)

~ 1/A

Noise source 
homogeneously distributed 

underneath the emitter.

[ Darby Lan ]



UTA Noise and Reliability Laboratory 12

Internal emitter resistance and ideality 
factor of base current
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n Base current dependence
n diffusion fluctuation in emitter.

n tunneling fluctuation in IFO.

n recombination fluctuation in emitter-
base space charge region. 

recombination fluctuation at spacer 
oxide interface.

n Emitter perimeter dependence
n Noise source distributed homogeneously around the emitter.
n Recombination fluctuation at the spacer oxide interface.

n Emitter area dependence
n Noise source distributed homogeneously underneath the emitter.
n Diffusion fluctuation in emitter or tunneling fluctuation in IFO. 

diffdiffB BI IS µ

2
tuntunB BI IS µ

2
recrecB BI IS µ

Physical origin of SIB
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recBtunBdiffBB IIII SSSS ++=

tunBdiffBB III SSS +»

n Unity ideality factor of                             negligible              .

negligible              .
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Physical origin of SIB (cont.)
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Diffusion and tunneling 
fluctuation component of SIB
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Area dependence of tunneling 
fluctuation of SIB in PNP transistors

Tunneling-fluctuation source 
homogeneously distributed 

underneath the emitter.

Thickest oxide

Smaller device-dimension 
severely affected by lateral 

diffusion and mask undercut; 
effective emitter area 

considered.
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αm : Hooge parameter in mono-Si
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Tunneling fluctuation in SIB

dtan

oxe

oV

!

oxide permittivity 
barrier height for the 
minority carriers 
modified Planck’s 
constant
area of IFO
loss tangent of the 
oxide

A

2

2

2
11

mn

t

p

p

m
m

m
ox

B

I

t

S
D
W

D
W

s
s

I

S
mnTB

-

ú
ú
û

ù

ê
ê
ë

é
÷
÷
ø

ö
ç
ç
è

æ
+++=

AfV
qkTLm

t

S

oxomn

tmn
pe

d
2

3*

2 3
tan

!
=

mnt

mntS

*m

q

k

L

tunneling probability 
of minority carriers 
fluctuation in      
effective mass of  
minority carriers
electronic charge
Boltzmann constant 
IFO thickness 

mnt



UTA Noise and Reliability Laboratory 19

Scaling effect on SIB

Relative AF

IFO thickness
0.7x100
( μm2 )

0.7x0.7
( μm2 )

thickest 1.12 1.89
medium 1.23 2.09
thinnest 1.01

n Diffusion fluctuation dominant in large (0.7x100μm2) devices.

n Tunneling fluctuation dominant in small (0.7x0.7μm2) devices.

AF
BI IKFS B ×=

AF for SIB in PNP transistors

tunBdiffBB III SSS +»

2
BTBD IKFIKF ×+×=
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Scaling effect on SIB in PNP 
transistors with thickest IFO
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Poly-Si emitter

oxide dl
ds

mono-Si emitter

dl < ds

Large device small device

base

n Thicker polysilicon in smaller transistors.
n Lower dopant concentration; shallower junction.

n higher chance for minority carriers from base to reach and tunnel 
through the oxide interface; tunneling fluctuation dominant.

n FLUORINE EFFECT: fluorine enhances oxide break-up.
n lower fluorine (from BF2) concentration causes less oxide 

breakup in smaller PNP devices; increased tunneling: 
(no fluorine in the transistors studied here)

Emitter plug effect in smaller device
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Poly-Si emitter

oxide d1

d1 < d2

base

d2

mono-Si emitter

n Polysilicon surface almost perpendicular to wafer surface 
at emitter window sidewall.

n Reduced doping concentration in the perimeter region.
n Shallower junction close to emitter window perimeter.
n An overlap of the emitter-base space charge region with 

poly-mono silicon interface might occur close to 
perimeter.

Perimeter depletion effect
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Perimeter/area vs. emitter area
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n non ideal peripheral component of base current increases.
n fluctuation in non-ideal base current might become significant.

Perimeter depletion effect in smaller 
transistors
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Effect of IFO on DC characteristics of 
0.7x100μm2 NPN transistors
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Effect of IFO on DC characteristics 
of 0.7x100μm2 PNP transistors
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Effect of interfacial oxide on SIB in NPN and PNP transistors
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n In PNP, diffusion fluctuation in mono and poly-silicon 
emitter dominates; less effect of IFO.

n In NPN, both diffusion fluctuation in mono and poly-
silicon emitter, and tunneling fluctuation through IFO 
contribute.

tundiffB IBIBI SSS +»
2IBKFIBKF TD ×+×=

AF
BI IKFS B ×=

Difference in the effect of IFO 
in NPN and PNP transistors

0.7x100μm2 transistors

Device type AF

PNP ~ 1

NPN ~ 1.5
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Physics behind difference 
in NPN and PNP transistors

n Hole barrier height larger than electron barrier height at 
interfacial oxide:
n minority carriers (holes) severely suppressed in NPN; 

significant current gain improvement.
n minority carriers (electrons) not suppressed significantly in 

PNP; little current gain improvement.
n Effect of fluorine:

n fluorine accelerates oxide break-up.
n fluorine from emitter dopant BF2 in PNP creates more oxide 

breakup; reduced tunneling and increased diffusion through 
broken oxide.  

n Increased  oxide breakup and faster diffusion of boron makes the 
emitter deeper in PNP:
n increased recombination-base current, reduced current gain 

improvement.
n higher diffusion fluctuation in larger monosilicon emitter 

region.
n Different oxidation rate of the base material could create different 

IFO thickness for NPN and PNP transistors on the same wafer.
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n IFO increases SIC both in NPN and PNP transistors.
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Some researchers assign the same 
origin of SIB to SIC.

is merely an amplified SIB.

SIC modeling
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Number fluctuation in SIC requires further investigation.

carrier transport determined 
by electric field in base 

collector junction.

Hooge type fluctuation at the 
collector side of base-

collector junction.

)12( -µ K
CI IS C

K
CIh µ22

1³K

1.E-07

1.E-06

1.E-05

1.E-05 1.E-04 1.E-03
IC (A)

ou
tp

ut
 c

on
du

ct
an

ce
 h 22

 (o
hm

-1
)

~ IC(0.98)

K=0.98

0.7x100μm2 PNP, thickest IFO



UTA Noise and Reliability Laboratory 32

n(x)

α, D

Diffusion fluctuation in SIC

÷÷
ø

ö
çç
è

æ
=

)(
)0(ln2 BBC

I

Wn
n

fW
qD

I

S
DC a B

Bs
B WD

WD
Wn
n

/
/

)(
)0( +
»
u

su saturated drift velocity

WB

collector

0

base mono-
silicon

oxide Poly-
silicon

metal 
contact

ca
rr

ie
r 

co
nc

en
tr

at
io

n 
n(

x)



UTA Noise and Reliability Laboratory 33

Outline

n Introduction:
n Limitations in existing noise models.
n Importance and motivation of research. 

n Noise in polysilicon emitter bipolar transistors:
n Experimental setup.
n SIB modeling:

n noise mechanisms, effect of bias, geometry and IFO.
n SIC modeling:

n noise mechanisms, effect of bias and IFO.
n SVr modeling:

n Collector-emitter measurement setup, effect of bias and IFO.
n Computer codes.

n Noise in SiGe heterojunction bipolar transistors:
n Dominant noise source.
n Effect of selective collector implant.
n Effect of higher extrinsic base implant.
n Effect of SiGe epi-SiGe poly interface.
n Effect of emitter-poly overlap.
n Physical origin and modeling of SIB.

n Conclusion



UTA Noise and Reliability Laboratory 34

Effect of bias on coherence in NPN 
and PNP transistors
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n Coherence decreases with increasing bias in NPN transistor.
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n SVC does not decrease any more for RS smaller than 1 kΩ.
n SVB becomes comparable to system background noise for RS 

smaller than 10 kΩ.
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0.7x100 μm2 NPN, thickest IFO, RS=100Ω

Dominant noise source in 
collector-emitter measurement

Unity coherence.
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0.7x100 μm2 NPN, RS=100Ω

Effect of interfacial oxide on SVr
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Effect of internal resistance in 
collector-emitter measurement

0.7x100 μm2 NPN, thickest IFO

Collector-base measurement, RS=1MΩ Collector-emitter measurement, RS=100Ω
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Tunneling fluctuation 
through interfacial oxide

AfV
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tan
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==

mjt tunneling probability of the 
majority carriers through IFO

mjtS fluctuation in         mjt

base mono-
silicon

oxide Poly-
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contact
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minority carrier 
tunneling
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majority carrier 
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Interfacial oxide thickness

Relative Emitter area interfacial oxide thickness (Å) from
IFO thickness (μm2) minority carrier majority carrier 

fluctuation (SIBT) fluctuation (SVre)
PNP NPN NPN

0.7x100 14.50 4.08

thickest 0.7x10 16.90

0.7x2.8 14.50

0.7x0.7 11.00

medium 0.7x100 4.13 11.30 2.26

0.7x0.7 8.78

thinnest 0.7x100 2.70

0.7x0.7 2.81

VVh 363.0= VVe 097.0=

oh mm 81.0* = oe mm 08.1* =

dtan

Inconsistency:
uncertainty in loss
tangent, mass and
potential barrier of
the carriers at oxide
interface.

obtained from
Kleinpenning et. al,
IEEE Trans. on Elec.
Dev., vol. 42, 1995.

as high as 1.8V and       as high 1 V  found in literature.
unique for each sample.dtan

hV eV
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Outline

n Introduction:
n Limitations in existing noise models.
n Importance and motivation of research. 

n Noise in polysilicon emitter bipolar transistors:
n Experimental setup.
n SIB modeling:

n noise mechanisms, effect of bias, geometry and IFO.
n SIC modeling:

n noise mechanisms, effect of bias and IFO.
n SVr modeling:

n Collector-emitter measurement setup, effect of bias and IFO.
n Computer codes.

n Noise in SiGe heterojunction bipolar transistors:
n Dominant noise source.
n Effect of selective collector implant.
n Effect of higher extrinsic base implant.
n Effect of SiGe epi-SiGe poly interface.
n Effect of emitter-poly overlap.
n Physical origin and modeling of SIB.

n Conclusion
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Experimental and Simulated data

Simulated Noise vs Lab
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Computer source code

n Existing BERKELEY SPICE source code has been 
modified. 
n Source code written at Texas Instruments Inc. by 

Douglas Weiser.
n and          have been added to the existing noise 

model in addition to         .
n An area scaling factor has been added to the 

equations to make the noise models scalable.

The modified BERKELEY SPICE source code is available 
to the SRC (Semiconductor Research Corporation) 
member companies (TI, Intel, IBM, Motorola, National 
Semiconductor Corporation, AMD, etc.)

CIS rVS

BIS
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Outline

n Introduction:
n Limitations in existing noise models.
n Importance and motivation of research. 

n Noise in polysilicon emitter bipolar transistors:
n Experimental setup.
n SIB modeling:

n noise mechanisms, effect of bias, geometry and IFO.
n SIC modeling:

n noise mechanisms, effect of bias and IFO.
n SVr modeling:

n Collector-emitter measurement setup, effect of bias and IFO.
n Computer codes.

n Noise in SiGe heterojunction bipolar transistors:
n Dominant noise source.
n Effect of selective collector implant.
n Effect of higher extrinsic base implant.
n Effect of SiGe epi-SiGe poly interface.
n Effect of emitter-poly overlap.
n Physical origin and modeling of SIB.

n Conclusion
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xyz

shallow trench shallow trench

n+ poly Si emitter
SiGe epi-SiGe poly interfacedielectric isolation

n+ Si emitter

p+ SiGe poly p+ SiGe poly

DTI
(deep 
trench

isolation)

p+ SiGe  
epi

p+ SiGe  
epi

DTI
(deep 

Trench
isolation)

p SiGe epi

DTI
(deep 
trench

isolation)

Device structure under investigation

x = emitter-poly overlap
y = composite enclosure of poly
z = DTI enclosure of composite

Selectively 
implanted      
collector

Transistors described as x-y-z; e.g. SIC:25-10-25.
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Dominant noise source

n Calculated SVC/SVB with SIB contribution  dominant closely 
matches experimental SVC/SVB ; SIB contribution dominant.

n IB increases rπ decreases coherence increases.
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Outline

n Introduction:
n Limitations in existing noise models.
n Importance and motivation of research. 

n Noise in polysilicon emitter bipolar transistors:
n Experimental setup.
n SIB modeling:

n noise mechanisms, effect of bias, geometry and IFO.
n SIC modeling:

n noise mechanisms, effect of bias and IFO.
n SVr modeling:

n Collector-emitter measurement setup, effect of bias and IFO.
n Computer codes.

n Noise in SiGe heterojunction bipolar transistors:
n Dominant noise source.
n Effect of selective collector implant.
n Effect of higher extrinsic base implant.
n Effect of SiGe epi-SiGe poly interface.
n Effect of emitter-poly overlap.
n Physical origin and modeling of SIB.

n Conclusion
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Selectively implanted collector (SIC)

Higher 
collector 
doping

Higher collector-
base capacitance

Lower maxf

Retarded Kirk-
effect Higher Tf

Selectively 
implanted 
collector

Higher        
and reduced 
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of 

Reduced 
base-width by 
compensation 
of boron tail

Tf

maxf
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Effect of selectively implanted collector
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n SIC retards Kirk-effect higher β for wider range of bias.
n No degradation in noise.
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Outline

n Introduction:
n Limitations in existing noise models.
n Importance and motivation of research. 

n Noise in polysilicon emitter bipolar transistors:
n Experimental setup.
n SIB modeling:

n noise mechanisms, effect of bias, geometry and IFO.
n SIC modeling:

n noise mechanisms, effect of bias and IFO.
n SVr modeling:

n Collector-emitter measurement setup, effect of bias and IFO.
n Computer codes.

n Noise in SiGe heterojunction bipolar transistors:
n Dominant noise source.
n Effect of selective collector implant.
n Effect of higher extrinsic base implant.
n Effect of SiGe epi-SiGe poly interface.
n Effect of emitter-poly overlap.
n Physical origin and modeling of SIB.

n Conclusion
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Higher extrinsic base implant (HEBI)

High dose 
implantation 
in extrinsic 
base

Smaller base 
resistance

Higher maxf

Lower RF 
noise figure
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Effect of higher extrinsic base implant
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n Higher gain for higher extrinsic base implant is 
possibly due to relative changes in Ge profile.

n No degradation in noise.
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Outline

n Introduction:
n Limitations in existing noise models.
n Importance and motivation of research. 

n Noise in polysilicon emitter bipolar transistors:
n Experimental setup.
n SIB modeling:

n noise mechanisms, effect of bias, geometry and IFO.
n SIC modeling:

n noise mechanisms, effect of bias and IFO.
n SVr modeling:

n Collector-emitter measurement setup, effect of bias and IFO.
n Computer codes.

n Noise in SiGe heterojunction bipolar transistors:
n Dominant noise source.
n Effect of selective collector implant.
n Effect of higher extrinsic base implant.
n Effect of SiGe epi-SiGe poly interface.
n Effect of emitter-poly overlap.
n Physical origin and modeling of SIB.

n Conclusion
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SiGe epi-SiGe poly interface
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TfHigher
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Effect of SiGe epi-SiGe poly interface
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n No significant impact on DC characteristics.
n No degradation in noise; boron implantation in extrinsic 

base passivates the interface-defects.
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Outline

n Introduction:
n Limitations in existing noise models.
n Importance and motivation of research. 

n Noise in polysilicon emitter bipolar transistors:
n Experimental setup.
n SIB modeling:

n noise mechanisms, effect of bias, geometry and IFO.
n SIC modeling:

n noise mechanisms, effect of bias and IFO.
n SVr modeling:

n Collector-emitter measurement setup, effect of bias and IFO.
n Computer codes.

n Noise in SiGe heterojunction bipolar transistors:
n Dominant noise source.
n Effect of selective collector implant.
n Effect of higher extrinsic base implant.
n Effect of SiGe epi-SiGe poly interface.
n Effect of emitter-poly overlap.
n Physical origin and modeling of SIB.

n Conclusion
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Effect of emitter-poly overlap
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n Significant g-r noise for smaller emitter-poly overlap.
n g-r noise diminished at higher currents in comparison to 

increased 1/f noise.
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Effect of emitter-poly overlap (cont.)
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2 dependence for smaller emitter-poly 
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Outline

n Introduction:
n Limitations in existing noise models.
n Importance and motivation of research. 

n Noise in polysilicon emitter bipolar transistors:
n Experimental setup.
n SIB modeling:

n noise mechanisms, effect of bias, geometry and IFO.
n SIC modeling:

n noise mechanisms, effect of bias and IFO.
n SVr modeling:

n Collector-emitter measurement setup, effect of bias and IFO.
n Computer codes.

n Noise in SiGe heterojunction bipolar transistors:
n Dominant noise source.
n Effect of selective collector implant.
n Effect of higher extrinsic base implant.
n Effect of SiGe epi-SiGe poly interface.
n Effect of emitter-poly overlap.
n Physical origin and modeling of SIB.

n Conclusion
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Physical origin of SIB

n All except smaller emitter-poly overlap ηr≤1.6, AF≈2.
n Smaller emitter-poly overlap ηr>3,  AF≈1.
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SIB model
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Noise from Surface recombination current
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SIB model for smaller emitter-poly overlap
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Outline

n Introduction:
n Limitations in existing noise models.
n Importance and motivation of research. 

n Noise in polysilicon emitter bipolar transistors:
n Experimental setup.
n SIB modeling:

n noise mechanisms, effect of bias, geometry and IFO.
n SIC modeling:

n noise mechanisms, effect of bias and IFO.
n SVr modeling:

n Collector-emitter measurement setup, effect of bias and IFO.
n Computer codes.

n Noise in SiGe heterojunction bipolar transistors:
n Dominant noise source.
n Effect of selective collector implant.
n Effect of higher extrinsic base implant.
n Effect of SiGe epi-SiGe poly interface.
n Effect of emitter-poly overlap.
n Physical origin and modeling of SIB.

n Conclusion
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Conclusion

n The base current fluctuations dominate at 
relatively high external base resistance values.

n Collector current fluctuations contribute when the 
external base resistance becomes comparable to 
or less than the input resistance.

n Fluctuations caused by the internal emitter 
resistance take over for high currents with small 
base resistance.

n From the dependence of noise magnitude on the 
geometry and temperature, fluctuations in the 
non-ideal base current was neglected.

Polysilicon emitter bipolar transistors:
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Conclusion (cont.)

n SIB originates from diffusion fluctuations of minority 
carriers in poly and monosilicon emitter, and 
tunneling fluctuations of minority carriers at IFO; SIC
from diffusion and number fluctuations of minority 
carriers in base, and SVre from tunneling fluctuations 
of majority carrier at IFO.        

n Diffusion fluctuations dominate over the tunneling 
fluctuations for larger devices; tunneling 
fluctuations dominate over diffusion fluctuations for 
the smaller ones.

n IFO increases the current gain significantly in NPN; 
both tunneling and diffusion fluctuations contribute.

n No significant improvement with increasing IFO 
thickness in PNP; diffusion fluctuations dominant. 
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Conclusion (cont.)

n Selectively implanted collector causes higher current 
gain for wider range of bias; no noise degradation.

n No significant effect of SiGe epi-SiGe poly interface 
and higher extrinsic base implant.

n Severe impact of smaller emitter-poly overlap: 
n increases non-ideality of the base current; trap 

assisted tunneling current due to parasitic BJT.
n g-r noise at lower bias currents.
n At higher bias currents, fluctuations from trap 

assisted tunneling current contribute.
n For all transistors except smaller emitter poly 

overlap, noise originates from intrinsic E-B junction.

SiGe heterojunction bipolar transistors:
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