Device Level Packaging of RF MEMS

Mohammad Shahriar Rahman

Advisor: Dr. Zeynep Çelik-Butler

The Nanotechnology Research and Teaching Facility University of Texas at Arlington, Arlington, TX 76019

MEMS Packaging Challenges

- Most expensive process in MEMS device fabrication
- **Difficult due to MEMS moving structures**
- Application specific: hermetic or vacuum sealing
- □ Isolation from ambient environment while exposure to agent(s) to be measured
- **Scalability from device to wafer level**

Introduction / Motivation

Why MEMS Resonators?

- The resonance frequency and Q-factor depends on the pressure of the vacuum cavity inside the package
- Serves as a good test-bed for "growing your ownpackage"

Approach

□First the package is fabricated without any resonator.

Later resonator is integrated with the package for self packaged MEMS device.

Vacuum-cavity Package Fabrication

Vacuum-cavity packages without resonators were fabricated to identify any processing issues prior to the integration of the MEMS device in the package.

Reliability of the Package

Design

Solid Model of MEMS resonator

Fundamental Mode Resonator Frequency

$$f_{0} = \frac{1}{2\pi} \sqrt{\frac{K_{r}}{m_{r}}} = 1.03 \sqrt{\frac{E}{\rho}} \frac{h}{L_{r}^{2}}$$

 $K_r \rightarrow Stiffness \quad m_r \rightarrow mass$ $E \rightarrow Young's Modulus \quad \rho \rightarrow Density$ $h \rightarrow Beam Thickness \quad L_r \rightarrow Length$

Design and Fabrication -I

> ConventorWare model and optical image of metal contact and first sacrificial layer deposition.

Design and Fabrication -II

> ConventorWare model, optical and SEM image of completely released resonator beam.

Design and Fabrication -III

SEM image of a completely released resonator beam

> No trace of polyimide under the resonator beam

Design and Fabrication -IV

 ConventorWare model, optical and SEM image of completely released resonator beam with packaging layer.
 Trench cuts are made to facilitate the ashing of second sacrificial layer.

Design and Fabrication -V

> A FIB cut made across the packaged resonator.

> No trace of polyimide under packaging layer and resonator beam.

Design and Fabrication -VI

100 μm EHT = 2.00 kV Wp = 7.4 mm Mag = 144 X Stage at T = 0.0° Signal A = SE2	Date :10 Mar 2009 Time :9:57:12	200 µm EHT = 2.00 kV Mag = 80 X WD = 9 mm Vidth = 1.422 mm Stage at T = 0.0° Signal A = SE2 Date :15 Jan 2009

SEM image of completely sealed resonators before and after opening bond pads Packages are intact after opening the bond pads.

[±] D. Butler, Z. Celik-Butler, M. Chitteboyina **M. S. Rahman**, US provisional Patent Application No. 61/218,032 (Applied June 2009).

Design and Fabrication -VII

Optical image of completely sealed resonators after opening bond pads

- > Packages are intact after opening the bond pads.
- > No trace of polyimide under sealing layer.

Design and Fabrication -VIII

> Top layer of a completely sealed resonator is removed to inspect the resonator inside.

Design and Fabrication -IX

> Resonator is intact inside the sealing layer

> No spreading of sputtered alumina through trench cuts

>No stiction or residue due to plasma ashing

Packaged Resonator Characterization-I

 RF characterization inside vacuum chamber.
 RF characterization setup includes E5071C network analyzer, Agilent E3620A power supply and vacuum pump.
 Device under test was attached to a 50 Ω Cu transmission line circuit board and wire-bonded to SMA connectors for RF characterization.

Packaged Resonator Characterization-II

Wafer level RF characteristics measurement at atmospheric pressure inside probe station. Setup includes E5071C network analyzer, and Agilent E3620A power supply.

Packaged Resonator Characterization-III

Completely sealed RF MEMS resonator. Shows no change in resonance frequency with chamber pressure variation.
 Devices are slightly overdriven to get the sharp transition

[±] M. S. Rahman, M. Chitteboyina, S. Pacheco, R. McBean, D. Butler and Z. Celik-Butler submitted at *IEEE Journal of Microelectromechanical Systems*

Packaged Resonator Characterization-IV

Comparison between sealed and unsealed resonator.
 Resonator inside package is under vacuum condition.

Packaged Resonator Characterization-V

>RF characteristics of completely sealed **RF MEMS** resonator.

> No change in resonance frequency and Q factor after extended hour measurement in probe station.

Packaged Resonator Characterization-VI

>Measured resonance frequency versus bias voltage. The frequency decrease with increasing bias voltage is due to the "spring softening" of the beam.

High Temperature Operating Life (HTOL) -I

➢ No change in resonance frequency and Q-factor during continuous operation at 70^oC for 150 hours.

High Temperature Operating Life (HTOL) -II

> At elevated temperatures no change in resonance frequency during continuous operation for 150 hours.

Slight shift of resonance frequency at higher temperatures might be attributed to the change in beam stiffness.

High Temperature Storage Life (HTSL)

Samples are kept inside a oven for 110°C for 1000 hours.
 Measurements are taken every 250 hours.

Stress is applied through temperature cycling between 27°C and 120°C.
 Each cycle consists of 12 hours. Experiments continue for 100 cycles.
 Measurements are taken every 25 cycles.

Measurements are taken every 25 cycles.

Temperature Cycling-II

No change in RF characteristics after 100 cycles.
Package is intact, after visual inspection.

Drop Test-I

> Optical and SEM image of a self-packaged resonator after drop test.

This test simulates the accidental drops, slips and falls of the package that might be encountered during manual or mechanical handling.

Drop Test-II

> RF response of a self-packaged resonator after drop test.
 > Resonator is working even after free fall from three feet.
 > Measured resonant frequency versus bias voltage of a self-packaged resonator after drop test.

> Packaged resonators were dipped into room temperature water for 241 minutes.

>Measurements were taken in between.

>No change was observed in resonance frequency .

Conclusions

- CMOS process compatible MEMS self-packaging technique has been developed.
- MEMS resonators have been designed, fabricated and tested.
- Sealing of MEMS resonators has been successfully demonstrated based on a double-sacrificial-layer surface micromachining technique.
- Resonators are successfully integrated with the developed self-packaging technique to achieve vacuum encapsulation.
- Extensive characterization has been done on self-packaged MEMS resonators
- Overmolding and long term and accelerated life testing of vacuum encapsulated MEMS resonators are performed.
- No noticeable degradation on the package stability and device performance has been observed after long term and accelerated life testing.

Acknowledgements

- UTA NanoFAB Facility
- SRC- 2006-KJ-1414
- Thanks to
 - Sergio Pacheco, Freescale Semiconductor
 - Ronald McBean, Freescale Semiconductor

