Accelerometers on Flexible Substrates

İsmail Erkin Gönenli

Advisor: Zeynep Çelik-Butler

Department of Electrical Engineering The University of Texas, Arlington

Physical Structure of an Accelerometer

Ζ

The structure of an accelerometer is formed by proof mass, damper and a spring. Whenever there is an acceleration, the proof mass moves which is opposed by the spring and the damper.

 $m x + b_m x + k_m x = F_x(t)$

•J. W. Gardner, V. K. Varadan and O. O. Awadelkarim, "Microsensors, MEMS and Smart Devices", *John Wiley and Sons*, 2005

Basic Principle of Capacitive Accelerometer

Acceleration

d∩

d₁

Accelerometer is based on parallel plate capacitance between a fixed plate and a movable plate connected to a spring. Acceleration is determined by the change in capacitance.

Damping Force

Damping: Dissipative forces such as friction, viscosity which take energy from the system and restrict its movement,

Slide Film Air Damping

Navier-Stokes Equation

$$\rho \left[\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} \right] = \vec{F} - \nabla p + \mu \nabla^2 \vec{v}$$
$$\vec{v} = u \vec{i} + v \vec{j} + w \vec{k}$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \frac{\mu}{\rho} \frac{\partial^2 u}{\partial z^2}$$

Movement in x-direction only

$$u(t) = a_0 \omega \cos \omega t = u_0 \cos \omega t$$

M. Bao, "Analysis and Design Principles of MEMS Devices", Elsevier, 2005

Damping Force

Squeeze Film Air Damping

$$\omega_0 = \sqrt{\frac{k}{m}}$$
$$\omega_c = \frac{\pi^2 h_0^2 p_a}{12 \,\mu w^2}$$

Free vibration frequency

Cutoff frequency (elastic force equals damping force)

When $\omega_0 << \omega_c$

- Gas film is assumed to be incompressible.
- Coefficient of damping force is assumed constant.
- Squeeze action is slow and there is time for gas to leak.
- ξ <1 \rightarrow under damped (continues to oscillate at natural frequency)
- $\xi=1 \rightarrow$ critically damped (comes to rest instantaneously)
- $\xi > 1 \rightarrow$ over damped (takes longer to come to rest)

• M. Bao, "Analysis and Design Principles of MEMS Devices", Elsevier, 2005

• M. Bao and H. Yang, "Squeeze Film Air Damping in MEMS", Sensors and Actuators A, vol. 136, pp. 3-27, 2007

 $\xi = c_{d0} / 2m\omega_0$

Electroplating

- Metal ion discharge at cathode
- Nucleation through surface diffusion
- Fusion of nuclei to form a continuous film

Device 1

WHOLE STRUCTURE

BOTTOM ELECTRODES

		Z-AXIS
Spring Constant (N/m)		10.118 <mark>(7.998)</mark> *
Damping Ratio	-40 °F	0.550
	60 °F	0.658
	160 °F	0.753
Frequency (kHz)		25.297
Rest capacitance (pF)		1.894
∆C (fF/g)		18.08
Mass (kg)		1.581 10 ⁻⁸

Device 1 Results

Device 2

WHOLE STRUCTURE

BOTTOM ELECTRODES

		Z-AXIS
Spring Constant (N/m)		10.118 (7.488)*
Damping Ratio	-40 °F	0.553
	60 °F	0.661
	160 °F	0.756
Frequency (kHz)	12-1,2-3,5-7	32.188
Rest capacitance (pF)		1.125
∆C (fF/g)		6.648
Mass (kg)		9.766 10 ⁻⁹

Device 2 Results

Device 3 X AND Y SENSING ON THE SAME STRUCTURE

Dimensions: 1605 µm x 1281 µm for x-axis and 1550 µm x 910 µm for y-axis (INCLUDING COMB LENGTHS) Number of movable combs: 72 for x-axis and 68 for y-axis Effective comb length: 71 µm for x-axis and 75 µm for y-axis

		X AXIS	Y AXIS
Spring Constant (N/m)		12.351*	24.794*
	-40 °F	0.553	0.545
Damping Ratio	60 °F	0.661	0.651
	160 °F	0.756	0.745
Frequency (kHz)		13.086	23.549
	inner	0.332	0.532
Rest capacitance (pr)	outer	0.199	0.732
	inner	3.808	0.975
	outer	3.635	1.160
Mass (kg)	Sec. Martin	7.213 10 ⁻⁸	4.471 10 ⁻⁸

Device 3 Results

Device 4 SAME TWO STRUCTURES ORTHAGONAL WITH RESPECT TO EACH OTHER TO SENSE BOTH X AND Y AXIS

Dimensions: 1605 μm x 1281 μm (INCLUDING COMB LENGTHS) Number of movable combs: 66 Effective comb length: 81 μm

		X AND Y-AXIS
Spring Constant (N/m)		24.063 (24.223)*
Damping Ratio	-40 °F	0.548
	60 °F	0.655
	160 °F	0.749
Frequency (kHz)		18.799
Rest capacitance (pF)	inner	0.386
	outer	0.230
∆C (fF/g)	inner	2.05
	outer	2.045
Mass (kg)	Bart Land	6.809 10 ⁻⁸

Device 4 Results

SAME TWO STRUCTURES ORTHAGONAL WITH RESPECT TODevice 5EACH OTHER TO SENSE BOTH X AND Y AXIS

Dimensions: 1900 μm x 1338 μm (INCLUDING COMB LENGTHS) Number of movable combs: 128 Effective comb length: 64 μm

		X AND Y-AXIS
Spring Constant (N/m)	States -	24.063 (24.230)*
Damping Ratio	-40 °F	0.559
	60 °F	0.668
	160 °F	0.764
Frequency (kHz)		19.846
Rest capacitance (pF)	inner	0.5573
	outer	0.3184
∆C (fF/g)	inner	2.7
	outer	2.6
Mass (kg)	1 - Carl	6.109 10 ⁻⁸

Device 5 Results

Device 6 SAME TWO STRUCTURES ORTHAGONAL WITH RESPECT TO EACH OTHER TO SENSE BOTH X AND Y AXIS

Dimensions: 1500 µm x 632 µm (INCLUDING COMB LENGTHS) Number of movable combs: 100 Effective comb length: 61 µm

		X AND Y-AXIS
Spring Constant (N/m)	6-31-3-3	24.063 (23.723)*
Damping Ratio	-40 °F	0.543
	60 °F	0.649
	160 °F	0.742
Frequency (kHz)		28.541
	inner	0.447
Rest capacitance (pr)	outer	0.276
∆C (fF/g)	inner	1.016
	outer	1.011
Mass (kg)		2.954 10 ⁻⁸

Device 6 Results

Devices 3 and 4

Devices 5 and 6

- Si/ Si₃N₄/ PI 5878G/ Si₃N₄/ AI.
- Metallization layer fabrication.

- Polyimide as sacrificial layer and patterning.
- Curing to obtain thickness of ~2.0 μm

- Gold seed layer for electroplating (~0.1 μm).
- Mold photoresist (~6.0 µm)

- UV-LIGA process to fabricate accelerometers.
- Ni electroplating to form the proof mass (~5.0 μm).
- Resist removal and etching off of the gold seed layer.

Oxygen plasma ashing of the polyimide sacrificial layer to suspend the structure.

Setup for Characterization

Shielded room

Setup for Characterization

CF (Trim capacitor)=5.130 pF CS1 and CS2=Variable capacitors Gain= 2 V/V V_{ref} = 0.5 V

CS1IN and CS2IN: Device capacitances

$$V_{out} = 1.14 * V2P25 * Gain * \frac{CS2_T - CS1_T}{CF} + V_{ref}$$

(Reprinted with permission from Irvine Sensors)

Measurement Results

Measurement Results

 Voltage response and change in capacitance with respect to acceleration for z-axis accelerometers on Si and flexible substrate. Both samples are Device 2

Si substrate, $\Delta C=21.9$ fF/g

Flexible substrate, $\Delta C=27.7$ fF/g

Measurement Results

 Voltage response and change in capacitance with respect to acceleration for z-axis accelerometers on Si and flexible substrate. Both samples are Device 4b

Si substrate, $\Delta C=11 \text{ fF/g}$

Flexible substrate, $\Delta C=17.5$ fF/g