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PREFACE TO THE FOURTH EDITION  
 
Although historically Prestressed Concrete has experienced a slower start than 
Reinforced Concrete and its development has followed a different path, it has 
evolved into a reliable technology and has established itself as a major structural 
material in par and in association with reinforced concrete and steel.  Prestressed 
concrete, has made significant contributions to the precast manufacturing industry, 
the cement industry, and the construction industry as a whole.  This has led to an 
enormous array of structural applications from bridges to nuclear power vessels, 
from buildings serving every use and occupancy to ships, and from lowly products, 
such as rail-road ties and piles, to monumental TV towers, and offshore petroleum 
platforms.  Seldom is a major construction project planned today without prestressed 
concrete being considered as one of the viable alternative solutions.  A careful 
analysis of future trends indicates a substantial increase in the use of prestressed 
concrete.  This is also supported by developments in partially prestressed concrete, 
which integrates both reinforced and prestressed concrete and treats them as the 
extreme boundaries of the same system. It has become almost inevitable to consider 
each material separately without considering their combination.  The term structural 
concrete is increasingly used to include both. 
 A similar trend is expected at the educational level.  Design courses in 
prestressed concrete will be more widely offered at universities and may be moved 
from the list of technical electives to the list of required courses in structural 
engineering curricula, particularly those combining bachelor and master’s degrees.  
It is also likely that reinforced and prestressed concrete will be offered as part of the 
same general course or course sequence on structural concrete, hence essentially 
covering partially prestressed (or partially reinforced) concrete. 
 
On Codes for Buildings and Bridges.  Unlike an analysis book, a design book must 
rely by necessity on existing codes for the treatment of examples. The two main U.S. 
codes for prestressed concrete structures are the ACI Building Code and the 
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AASHTO LRFD Bridge Design Specifications. These codes have become 
increasingly lengthy and complex, and undergo relatively frequent updates and 
changes.  Since most computations in the design of large projects are conducted 
today using powerful software programs, both the ACI and AASHTO codes seem to 
have shied away from targeting simplicity and brevity in various specifications.  
Their growing bulk with each new edition is reflected in the length of this book, 
because, for every example, the related code provisions, exceptions, and limitations 
must be explained. For example, Chapter 14 on Bridges grew from 57 pages in the 
first edition of this book, in 1982, to 164 pages in this edition.  There may be a time, 
not too far away, where a textbook will simply deal with the fundamentals and all 
examples will be treated using existing software programs.  This stresses the need to 
keep the fundamentals as strong as possible, and is the key objective of this book, 
insuring an in-depth analytical basis necessary to handle any design situation or code 
provision.   Design handbooks, professional guides and codes are not meant to cover 
the basics in such depth.   
 
Audience and Educational Strategy. This book is written for advanced students, 
instructors and professionals.  It is intended as a thorough teaching text, as well as a 
reference document for practicing engineers and researchers. It emphasizes the 
fundamental concepts of analysis and design of prestressed concrete structures and 
provides students with a sufficiently strong basis for handling everyday design 
problems, and tackling the more complex problems with confidence.  A particular 
effort is made throughout to synthesize and condense the essential information and to 
give an overview of the directions in which the design is proceeding.  Self-sufficient 
logical design flow charts summarizing the step-by-step design procedures and 
containing all necessary design equations are often presented.  They reduce the 
burden of guesswork and iterative try-out encountered in the design process, and are 
essential when programmable calculators and computers are used.  Important 
formulas and equations are also condensed in tables for ready use.  To provide a 
correlation with reinforced concrete design and to help engineers already familiar 
with reinforced concrete, the case of partially prestressed (or partially reinforced) 
concrete is frequently addressed.  An extensive selection of references is given at the 
end of each chapter.  An attempt was made to include not only necessary readings 
but also most recent research conducted in the United States for up-to-date 
information. Specifications of the 2019 ACI building code and relevant requirements 
of the 2020 AASHTO LRFD Bridge Design Specifications are integrated in the text.  
When appropriate guidance is not available in the code, suggestions are made to 
accommodate the intent of the code. At occasions where the authors’ opinion differs 
from that of the code, the difference is explained and defended. 
 Whenever possible, widely accepted symbols, such as those used in the ACI 
code, are adopted and all symbols used in the text are defined and summarized for 
easy reference in Appendix A.  A consistent notation and sign convention is 
followed throughout, allowing rigorous treatments when needed.  This is essential, 
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for instance, in the case of continuous beams where the sign of secondary moments 
cannot be visualized a priori and must be derived from the analysis.  
 Because of the inevitable future conversion from U.S. customary units to the 
International System of Units (SI), all important tables, figures, and design 
information, as well as dimensionally inconsistent equations, are given in dual units.  
However, since the prestressed concrete industry in the US is not on the verge of 
change from U.S. customary units to SI units, all examples are treated in U.S. units 
to allow students and professionals to stay in tune with current practice.  In addition, 
SI conversion factors and SI equivalents for some dimensionally inconsistent 
equations used in various flow charts are given in Appendix B. 
 Compared to the previous three editions, this edition is expanded to 
accommodate the new version of the 2019 ACI and 2020 AASHTO codes in text and 
examples. New Chapter 15 dealing with prestressed post-tensioned slabs-on-ground 
(PT-SOG) was added, and Chapter 16 on strut-and-tie modeling and design was 
updated and extended, allowing the use of this book for a full course targeted to post-
tensioned concrete structures. This 4th edition incorporates a countless number of 
minute improvements based on more than four decades of teaching and research 
since the printing of the first edition, adding broader knowledge and technical 
wisdom to the material.  Overall, more examples are given, numerous clarifications 
are provided, the number of figures and photographs has significantly increased, and, 
when relevant, remarks summarizing the authors’ opinion that may differ from the 
codes, have been added.   
 
Functional Organization.  The text is organized into 16 chapters, which can be 
assembled according to their intended function: 
 The first three chapters contain essential design information and reference data.  

They provide general background on materials properties, design philosophy, and 
codes. 

 Chapters 4 to 8 develop the fundamental basis and underlying principles for the 
analysis and design of prestressed concrete members.  They include analysis and 
design for flexure by the working stress design method with an introduction to 
optimum design (Chapter 4), analysis and design for flexure by the ultimate 
strength design (or load and resistance factor design) method with full coverage 
of partial prestressing (Chapter 5), design for shear and torsion and their 
combined effects with flexure (Chapter 6), design for deflection control with 
treatment of partially prestressed cracked sections and the incremental time-step 
method to predict long-term deflection (Chapter 7), and prediction of prestress 
losses either by lump sum estimates or by the accurate incremental time-step 
method (Chapter 8). 

 Chapters 9 to 15 address the particular analysis and design aspects of structural 
elements or systems in various applications of prestressed concrete.  They cover 
composite beams (Chapter 9), continuous beams (Chapter 10), one and two-way 
slab systems (Chapter 11), prismatic tensile members and cylindrical tanks 
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(Chapter 12), short and slender columns (Chapter 13), bridges (Chapter 14), and 
post-tensioned slabs-on-ground (Chapter 15). 

 Chapter 16 on strut-and-tie modeling and design addresses a subject that is likely 
to be more extensively used in future codes and provides a research-oriented path 
to discontinuity regions and connections. In an advanced course, Chapter 16 
could be presented following coverage of shear and torsion in Chapter 6.   

 Several appendixes are given at the end of the book, including a list of symbols 
(Appendix A), SI conversion factors (Appendix B), technical information on some 
post-tensioning systems including tendons and anchorages (Appendix C), answers to 
selected problems (Appendix D), and examples of precast-prestressed beams 
(Appendix E) taken from the PCI Handbook. 
 The material in the book is extensive and can cover up to two semester courses in 
prestressed concrete spanning from the senior undergraduate level to the advanced 
graduate level.  It also contains sufficient material for a short course on bridge design 
using the AASHTO LRFD specifications, while several chapters can be used for a 
course on Post-Tensioned Concrete Structures. Tentative course outlines are 
suggested next. 
 
Course 1, Part 1: Fundamentals of Prestressed Concrete   
In a first course on prestressed concrete the authors recommend the following 
approach, assuming a semester-long course with 42 lectures of about one hour each: 

 Chapter 1, introduction:  Cover entirely in no more than two lectures. 
 Chapter 2 on materials for prestressing: Cover in less than two lectures; focus 

mainly on the properties of prestressing steels and their implication for 
design.  Students can read the remaining material on their own as reading 
assignment and will refer back to these chapters when other topics are 
covered such as deflection, losses, columns, etc. 

 Chapter 3 on philosophy of design: Cover in about two lectures.  Besides 
explaining the general philosophy of design as applied to prestressed 
concrete, explain curvature, the C-line or C-force concept, load-balancing 
concept, and how prestress losses are simply accommodated in preliminary 
design by using the factor  

 Chapters 4 to 7 on working stress analysis and design, ultimate strength 
analysis and design, design for shear and torsion, and computation of 
deflections:  These chapters should be covered in depth to insure a strong 
basis in the fundamentals of prestressed concrete and prepare students for 
detailed design.  Depending on time available, parts of certain chapters may 
be omitted.  For instance, the design of anchorage zone in Chapter 4 may be 
skipped.  In Chapters 5 and 6, depending on time and audience, only the 
approach followed by ACI (or conversely by AASHTO) could be treated and 
the rest assigned as independent reading.  In Chapter 6, omit the section on 
combined shear and torsion.  In Chapter 7, the long-term deflection by 
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incremental time steps could be left out to a more advanced treatment.  
Devote eighteen to twenty lecture hours for Chapters 4 to 7. 

 Chapter 8 on prestress losses:  At a minimum, cover prestress losses by the 
total lump-sum estimate of total losses; lump sum estimates of individual 
losses (including code recommended procedures) could be covered next, and 
losses by the time-step method could be treated only if time allows.  Students 
involved in research may benefit greatly from the treatment of losses by the 
time-step method, because it involves a deeper understanding of material 
behavior (creep and shrinkage of concrete, relaxation of steel) and its 
implication on structural response.  However, generally, most users are less 
interested in probing prestress losses beyond the minimum needed. For this 
reason it is suggested to leave the treatment of prestress losses to this later 
stage in the course.  Also, it is recommended to leave the treatment of losses 
due to friction and anchorage set to a second course.  Devote at most two 
hours to this chapter. 

Course 1, Part 2:  Applications   
In a second part of a first course, analysis and design related to specific 
applications could be covered.  The selection of topics should depend on the 
interest of the audience and available time. The following sequence is 
recommended in priority: 

 Chapter 9 on composite beams: Cover entirely in about four lecture 
hours.  

 Chapter 10 on statically indeterminate structures including continuous 
beams and one-way slabs; for a first course cover in two lecture hours.  

 If time allows and based on students’ interest: cover parts of Chapter 11 
on two-way slabs, or Chapter 14 on bridges, or Chapter 13 on columns.  

Based on years of teaching, it has been the authors’ experience that Parts 1 and 2 
described above would amply cover a semester-long course on prestressed concrete, 
assuming time is allocated for one mid-term exam and a final exam.  Note however,  
that in its present form, the book with 16 chapters easily provides sufficient material 
for two consecutive semester courses on prestressed concrete. Other course options 
include the following.  

 
Course 2:  Prestressed Post-Tensioned Concrete Structures  
This course would invariably start with a quick coverage (reminder) of fundamentals 
taken from Part 1 of Course 1, and then focus on post-tensioned concrete 
applications starting with One and Two-Ways Slab Systems (Chapter 11 and review 
of Chapter 10), Post-Tensions Slabs-On-Ground (Chapter 15), Bridges (Chapter 
14), and possibly Strut and Tie Modeling and Design (Chapter 16). Anchorage zone 
design (Chapter 4) and prestress losses due to friction and anchorage set (Chapter 8) 
should also be covered. 
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Course 3:  Prestressed Concrete Bridges   
This book contains sufficient material to cover a course on Prestressed Concrete 
Bridges; indeed, Chapter 14 on bridges, is supported by several sections in Chapters  
5, 6, 7, 8, 9, and 16 explaining the AASHTO  LRFD Bridge Design Specifications 
with related examples. 
 
Course 4: Advanced Topics in Prestressed Concrete 
The following material is suggested for a fourth, more advanced course on 
prestressed concrete (targeting doctoral students, instructors, and high-level 
professionals), as has been taught by the first author at the University of Michigan, 
assuming Course 1 as a prerequisite: 

 Chapter 10 on continuous beams: Cover entirely. 
 Chapter 11 on prestressed one- and two-way slab systems.  
 Book 2 – PPC: “Prestressed and Partially Prestressed Concrete.” This 

book is in progress, but its content could be amassed from research 
papers. Analysis and design of partially prestressed beams with either 
bonded or unbonded tendons in the elastic uncracked, elastic cracked, and 
ultimate limit state.  Particular application to external prestressing with 
effect of eccentricity variation.  Design for serviceability limit states, 
including fatigue, cracking, and short- and long-term deflections. 
Nonlinear analysis of prestressed and partially prestressed beams with 
both bonded and unbonded tendons; modeling material and sectional 
behavior (see also Section 2.4); pseudo-nonlinear analysis and 
compatibility analysis.  Concept of ductility and design for minimum 
ductility. Optimum design concepts and applications to prestressed 
concrete.  Potential use and implications for analysis and design, of 
prestressed fiber reinforced polymeric tendons. Introduction to 
earthquake-resistant design and detailing. 

 Chapter 12 on tensile members:  Cover entirely and illustrate the 
application of optimum design to tensile members including walls of 
cylindrical tanks. 

 Chapter 13 on columns: if non-slender columns were covered in a first 
course, revisit this chapter with particular attention to slenderness effects 
in columns. 

 Chapter 16 on strut-and-tie modeling: After revisiting parts of Chapter 6 
for shear and torsion, cover this chapter entirely. 

Chapters or parts of chapters that were omitted during the first course, such as 
bridges, slabs-on-ground, anchorage zone design, prestress losses due to friction and 
anchorage set, and combined design for shear and torsion, could be covered during 
this forth course as well.  Moreover, it is strongly recommended to assign a term 
project with some research orientation as a necessary requirement for this course.   
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 In committing to the challenge of writing this book, the authors have attempted 
to synthesize and convey what they have learned and practically experienced in 
teaching and working with prestressed concrete over several decades. While they 
were particularly concerned by the length of this book, they hope that the reader will 
accept to trade-off length in favor of insuring that the fundamentals are preserved as 
a reference source and covered in depth, and in order to supplement information that 
cannot possibly be found in handbooks, professional guides or introductory primers 
on prestressed concrete.  They believe that a current level of knowledge of any topic 
is only fully understood when a higher level has been attained and exploited. They 
sincerely hope that those who seek knowledge in this book will not be disappointed. 
 

Antoine E. Naaman  -  Shih-Ho Chao 
 
 
 
 
 
 

 
 

 
The Puente Sobre El Rio Bridge in Lerez, Spain, is a cable stayed bridge with a main span of 
129 m (423 ft) and a prestressed concrete single box deck.  (Courtesy Carlos Fernandez Casado 
S.L.). 
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The Chuncheon Grand Bridge (Chuncheondaegyo) in South Korea, completed in 2017, is a 
prestressed concrete cable-stayed bridge with two-spans of 100 meters each and a total length 
of 1,058 m (3,471 ft); it used an optimized deck with exterior stiffening girders made with 
an Ultra-High Performance Concrete (UHPC) with a design compressive strength of 180 
MPa. (courtesy Byung-Suk Kim, Korea Institute of Civil Engineering and Building 
Technology, Goyang, South Korea). 

 
The Yumekake Bridge in Nara, Japan, is a 3-span continuous extradosed prestressed concrete 
rigid frame bridge with a main span of 127 m (417 ft). The term “extrados” implies that the stay 
cables also serve as external prestressing tendons to the deck. (Courtesy Hiroshi Akiyama, 
Zenitaka Corp., Japan) 




