Programming Assignment

2013 SIAM Gene Golub SIAM Summer School
10th Shanghai Summer School on Analysis and Numerics in Modern Sciences

Test Matrices
  1. matrix pencil A-\lambda B arises from solving Korn-Sham equation for C6H6 by SCF. It is a reduced one (of 25×2500) for fast experimenting. The unreduced one is of 14895×14895. Courtesy of Prof. Yunkai Zhou (SMU).
  2. matrix pencil A-\lambda B arises from solving the Laplacian eigenvalue problem in a barbell shaped domain. Courtesy of Prof. Qiang Ye (U. Kentucky) and Dr. Patrick Quillen (Mathworks).
  3. linear response eigenvalue problem arises from the linear response analysis for Na2 using plane-waves as a basis set and pseudopotentials. It is generated by the Quantum ESPRESSO. While here both K and M are dense, they are never meant to be formed explicitly, but exist implicitly through matrix-vector product. Nonetheless, they are formed for easy experimenting in MATLAB. Courtesy of Prof. D. Rocca (Universite de Lorraine – CNRS)
MATLAB functions
  1. Steepest Descent Methods (a sample driver):
    • Steepest Descent Method: SDgS.m
    • Block Steepest Descent Method: BSDgS.m
    • Preconditioned Steepest Descent Method: PSDgS.m
    • Block Preconditioned Steepest Descent Method: BPSDgS.m
    • Expert Block Preconditioned Steepest Descent Method: xBPSDgS.m
  2. Conjugate Gradient Methods (a sample driver):
    • Conjugate Gradient Method: CGgS.m
    • Preconditioned Conjugate Gradient Method: PCGgS.m
    • Locally Optimal Conjugate Gradient Method: LOCGgS.m
    • Locally Optimal Block Conjugate Gradient Method: LOBCGgS.m
    • Locally Optimal Preconditioned Conjugate Gradient Method: LOPCGgS.m
    • Locally Optimal Block Preconditioned Conjugate Gradient Method: LOBPCGgS.m
    • Expert Locally Optimal Block Conjugate Gradient Method: xLOBCGgS.m
    • Expert Locally Optimal Block Preconditioned Conjugate Gradient Method: xLOBPCGgS.m
  3. Steepest Descent Methods for the linear response eigenvalue problema sample driver and the function.
  4. Conjugate Gradient Methods for the linear response eigenvalue problema sample driver and the function. Also needed is KM.m.
  5. Conjugate Gradient Methods for the hyperbolic quadratic eigenvalue problema sample driver and the function. Also needed is HQEP.m.
  6. Auxiliary MATLAB functions:
    • Line Search: LNSRCHg.m
    • Modified Gram-Schmidt in B-inner product: MGSg.m
    • Computing the first few smallest eigenvalues of a Hermitian matrix: mineig.m
    • (Linear) Conjugate Gradient method for Ax=bLinCG.m
Assignment:


Program various extended methods (i.e., enlarge search subspaces to a higher order Krylov subspaces) by modifying the relevant MATLAB functions above.

Written Assignments