

- outcomes, as measured by the Wechsler Intelligence Scale for Children (WISC-III), from a diverse set of predictors including visuospatial memory test results, demographic information, and the presence of ADHD.
- Our study aims to understand the complex link between ADHD and cognitive performance, enhancing predictive models.

Predicting The Wechsler Intelligence Scale Indices for Each Subtest Group, Subtest Composition, and All Subtests for ADHD Dataset using Several Regression Models.

The Experiment and Dataset

Resu	lt

Table 2: Performance Outcomes of the Top Two Predictive Models_ **Target Problem** Features FDI Rtime_q75, Perform_mean, Age, Gender, ADHD SS Rtime_q75, Perform_mean

 Table1: Summary of Dataset Characteristics

Subject Total (n= 50)	Subject In Our Analysis	Gender	Age
ADHD (n= 28)	ADHD (n= 27)	40 Girl	1o to 12
Control (n= 22)	Control (n= 22)	9 Boy	Years old

ds	
	<u>Step 1</u>
python	Features
	* Including visuospatial memory task results (reaction time statistics and performance metrics).
h	*Demographic information: (Age, Gender).
	* The presence of ADHD.
iables	
lligence lices	Regression Models:
mance_IQ) <u>on:</u> I, PSI,)	* LinearRegression(). * Ridge().
	*Lasso(). *ElasticNet(). *SVR().
,PC, PA, BD,	*DecisionTreeRegressor().
(3 , W])	*RandomForestRegressor().

*GradientBoostingRegressor().

*KNeighborsRegressor()

Regressor	Adj R ²	AIC	BIC
GradientBoostingRegressor	0.716091	67.759	74.414
RandomForestRegressor	0.677592	36.789	38.452

Figure 4: Analysis of WISC Subtest Scores: T-test Comparison of Means Across Domains.

1- Vimalajeewa, D., McDonald, E., Bruce, S. A., & Vidakovic, B. (2022). Wavelet-based approach for diagnosing attention deficit hyperactivity disorder (ADHD). Scientific Reports, 12, Article 21928.

 This work was possible because of the efforts of **Dr. Maia Pedro.** Thank you for your academic and professional help.

Comparison of Means by T-test

Conclusions/ Future Work

In conclusion, we provide **correlation** between **ADHD** and *cognitive abilities* while also showcasing the potential of *machine learning* to improve *predictive* capabilities.

In future work, we will *refine our model* by identifying key features from **pupil time** series for *cognitive analysis*.

References

Acknowledgements

Rodina Eladawy Rodina.eladawy@mavs.uta.edu

Maia Pedro Pedro.maia@mavs.uta.edu