

Li⁺ anode material

Machine Learning Interatomic Potentials for Pyrolysis of Polysiloxanes and Properties of SiCO Ceramics Mitchell Falgoust and Peter Kroll

Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019; mitchell.falgoust@mays.uta.edu

Great

Accurate

DFT-like behavior at low and high temperature

Fast

Capable of long simulation times with large systems

Useful

Vibrational calculations and reaction simulations

Room for Improvement

Imperfections

- Low reactivity of H₂O and CH₄
- Si and C defects
- Uneven force error distribution

Solutions

- More configurations
- Reactive intermediates
- SiCO glass and SiCO + C_{free}

Summary

Developed MLIP for Si/C/O/H

- Validated MLIPs of differing complexity
- Compared vDOS results of MLIP vs. DFT
- Simulated reactive conversion of
- polysiloxanes to SiCO ceramics

References

- 1. Stabler et al, Journal of the American Ceramic Society 2018, 101, 4817-4856.
- 2. Widgeon et al, *Chemistry of Materials* **2010**, 22, 6221-6228.
- 3. Saha et al, Journal of the American Ceramic Society 2006, 89, 2188-2195. 4. Colombo et al, Journal of the American Ceramic Society 2010, 93, 1805-1837.
- 5. Shapeev et al, Multiscale Modeling & Simulation 2016, 14, 1153-1173.
- 6.Novikov et al, *Machine Learning: Science and Technology* **2021**, 2, 025002.
- 7.Podryabinkin et al, *The Journal of Chemical Physics* **2023**, *159*, 084112.
- 8. Shiina et al, *The Journal of Organic Chemistry* **1958**, 23, 139-139.
- 9.Blöchl et al, *Physical Review B* **1994**, *50*, 17953-17979.
- 10.Kresse et al*Physical Review B* **1999**, *59*, 1758-1775.
- 11.Perdew et al, *Physical Review Letters* **1996**, 77, 3865-3868.
- 12.Perdew et al [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters **1997**, 78, 1396-1396.
- 13.Kim et al, The Journal of Physical Chemistry Letters 2012, 3, 360-363. 14. Thompson et al, Computer Physics Communications 2022, 271, 108171.