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Figure 4. Overall methodology for data-model synthesis as adopted from Inglis et al. (2020). The resulting GMST will 
be independent of the model climate sensitivity but dependent on modeled spatial distribution of temperature.

Table 1. Prescribed Solar Insolation (S0) and Orbital Parameters for CESM1.3 
(Kiehl and Shields, 2005; Winguth et al., 2015)

- Estimation of Global Proxy SST follow Fransworth et al., (2019) as mentioned in Inglis et al., 
(2020) as follows: 

<Thigh> and <Tlow>  are global means of high- and low- CO2 simulation, respectively, 
Thigh - Tlow are the local Land Air Temperatures for the respective model simulation scenarios and,  
Tproxy is the proxy temperture estimate.  

a. b. c.

- The mean proxy-inferred temperature LAT for North China is 23°C.
- Similar to this step, once the LAT(inferred)is calculated for rest of the 

paleo-locations, the GMST will be calcuated using the global scaling 
factor.

- The  pCO2 from proxy-derived GMST utilizing the ECS computed 
from  CESM1.3 sensitivity experiments.

- Such point-to-point model-proxy synthesis will allow for better con-
straints on the pCO2 estimates which still exist in a vastly proposed 
range. 

- This will also allow to address any missing feedbacks that could be evalu-
ated to simulate such climate transitions into a hothouse world. 
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Figure1. PTME extinction and its world 
(Corso et al., 2022)

Figure2. Schematic workflow of paleo 
proxy-model data integration to im-
prove and constrain the understanding 
of climate system. The three main 
challenges are highlighted in red that 
need to be addressed to constrain the 
uncertainty related to the paleoclimate 
models as well as data (Jonkers et al. 
2021).

-  PT mass extinction occurred ~251.9 
Ma (Payne and Clapham, 2012)

- Around 81%-94% of marine and 
70% of terrestrial species went ex-
tinct (Corso et al., 2022) 

<Tlow> = 24.6˚C <Thigh> = 35˚C

Simulating intervals such as the Permian Triassic Mass Extinction that 
are potentially exacerbated by climate system feedbacks is crucial for 
validating future climate predictions under heightened greenhouse gas 
levels, during transitions to hothouse conditions. Here, we develop and 
prescribe boundary conditions consistent with the reconstructed topog-
raphy at 1ºx1º resolution for the CESM1.3 model for model intercom-
parison projects. Sensitivity experiments forced with these boundary 
conditions and various CO2 levels, relative to present-atmospheric 
levels of 280 ppmv, and aerosol loadings (using BAM) can resolve the 
competing effects of greenhouse warming and aerosol induced increas-
es in cloud-optical thickness and cooling. In this study we aim to derive 
the estimates for the global mean surface temperature (GMST) from 
the most recent, high-resolution datasets for selective locations of inter-
est for synthesis with the GMSTs derived from the modeled data to 
quantify the climate sensitivity. Such synthesis can provide valuable in-
sights into how Earth's climate responded to extreme warming events 
in the past and how it might respond under similar conditions in the 
future as well as bridging the gap for quantifying climate feedbacks 
leading to the largest biotic crisis in the geologic past.
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Figure 5. Climatology graphs for North China (21°N 107°E) from CCSM3 model results  for Permian-Triassic interval. 
The three panels show the various sensitivity experiments for CO2 radiative forcings relative to PAL of 280ppm with 
a) 4x CO2, b) 12x CO2 as well as c)12x CO2with thin cloud cover. 

Table 2. Soil temperatures for the various paleo-proxy locations and their respective temperature estimates 
(Courtesy of Joachimski et al., 2022).

Note: they 
used a ± 5° C 
temperature 
range around 
calculated av-
erage soil 
temperature 
for pCO2 cal-
culations.


