

Introduction

- The β -diketone scaffold, which is present in curcumin and its derivatives, has become a subject of interest for its potential anticancer properties, resulting in numerous investigations into related metal complexes.
- Platinum(II) complexes with β -diketonate ligands displayed controlled toxic effects, with phenyl ring substituents increasing lipophilicity and cellular uptake, and CF₃ groups hastening hydrolysis rates in aqueous solutions [1].

	$IC_{50} (\mu M) \pm S.D.$				
	HCT-15	U-1285	NTERA-2	BxPC-3	MCF-7
$[Mn(L^{CF3})_2(H_2O)_2]$	2.9 ± 0.4	17.2 ± 3.0	2.8 ± 1.2	3.7 ± 0.7	2.7 ± 0.6
$[Fe(L^{CF3})_2]$	>50	>50	>50	>50	>50
$[Co(L^{CF3})_2(H_2O)_2]$	26.4 ± 3.8	39.5 ± 4.6	18.5 ± 3.8	10.5 ± 2.3	14.2 ± 4.2
$[Ni(L^{CF3})_2(H_2O)_2]$	26.1 ± 5.2	37.2 ± 3.3	16.4 ± 3.2	19.5 ± 3.0	21.3 ± 3.2
$[Cu(L^{CF3})_2]$	15.8 ± 3.2	12.1 ± 2.3	12.2 ± 1.5	15.5 ± 2.4	25.3 ± 4.1
$[Zn(L^{CF3})_2]$	11.2 ± 3.2	16.5 ± 2.7	10.0 ± 1.2	11.2 ± 0.9	8.2 ± 2.5
$[Mn(L^{Mes})_2(H_2O)_2]$	1.2 ± 0.7	5.3 ± 1.2	1.3 ± 0.6	2.9 ± 0.6	2.3 ± 0.4
[Fe(L ^{Mes}) ₂]	>50	>50	>50	>50	>50
$[Co(L^{Mes})_2(H_2O)_2]$	6.8 ± 2.1	9.2 ± 2.2	3.1 ± 0.7	8.4 ± 2.5	11.8 ± 2.6
$[Ni(L^{Mes})_2(H_2O)_2]$	31.7 ± 4.3	33.3 ± 6.4	15.5 ± 3.7	11.2 ± 1.1	23.2 ± 2.8
[Cu(L ^{Mes}) ₂]	2.5 ± 1.0	4.1 ± 1.2	3.0 ± 0.5	1.2 ± 0.4	3.2 ± 0.6
$[Zn(L^{Mes})_2]$	8.9 ± 2.1	16.1 ± 3.5	2.5 ± 0.5	2.0 ± 0.6	3.8 ± 1.0
Cisplatin	18.5 ± 2.2	8.3 ± 1.4	14.6 ± 3.0	11.9 ± 1.3	11.0 ± 0.8

2D Cytotoxicity

Cells (3-8 x 10^3 x well) were treated for 72 h with increasing concentrations of tested compounds. Cytotoxicity was assessed by MTT test. The IC_{50} values were calculated by the four-parameter logistic model (p < 0.05) [3].

References

[1] L. H. Doerrer; H. V. R. Dias, *Dalton Trans.* **2023**, *52*, 7770-7771. [2] C. Santini, M. Pellei, V. Gandin, M. Porchia, F. Tisato, C. Marzano, Chem. Rev. 2014, 114, 815-862. [3] M. Pellei; J. Del Gobbo; M. Caviglia; V. Gandin; C. Marzano; D.V.

Karade; A.N. Poyil; H.V.R. Dias; C. Santini Int. J. Mol. Sci. 2024, 25, 2038

[4] M. Pellei; J. Del Gobbo; M. Caviglia; D.V. Karade; V. Gandin; C. Marzano; A.N. Poyil; H.V.R. Dias; C. Santini Dalton Trans. 2023, 52, 12098-12111.

New homoleptic and heteroleptic 3d-block metal complexes of *β*-diketonates with different degrees of fluorination as promising anticancer agents

J. Del Gobbo^a, M. Pellei^a, C. Santini^a, M. Caviglia^a, D. V. Karade^b, A. N. Poyil^b, V. Gandin^c, C. Marzano^c, H. V. R. Dias^b

^a School of Science and Technology, Chemistry Division, University of Camerino, Italy ^b Department of Chemistry and Biochemistry, The University of Texas at Arlington, USA ^c Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Italy

jo.delgobbo@unicam.it

Unknown

There is limited research concerning the anticancer efficacy of homoleptic first-row transition metal complexes utilizing β -diketonate ligands [2].

Only a few examples of specific Cu(II) derivatives, Casiopeinas®-like compounds, and analogous heteroleptic complexes have been reported.

Copper(I)- and silver(I)-based anticancer complexes supported by β -diketonate ligands remain an unexplored research field.

3D Cytotoxicity

	HCT-15
$[Cu(L^{CF3})(PPh_3)_2]$	58.5 ± 5.8
$[Ag(L^{CF3})(PPh_3)_2]$	>100
$[Cu(L^{Mes})(PPh_3)_2]$	86.6 ± 6.7
$[Ag(L^{Mes})(PPh_3)_2]$	>100
[Ag(L ^{Mes})(PTA)]	>100
$[Cu(L^{Ph})(PPh_3)_2]$	>100
$[Ag(L^{Ph})(PPh_3)_2]$	82.5 ± 5.8
$[Ag(L^{Ph})(PTA)]$	>100
Cisplatin	59.5 ± 3.3

3D representation of a spheroid

Cells (2.5 x 10^3 x well) were treated for 72 h with increasing concentrations of tested compounds. Cytotoxicity was assessed by APH assay. The IC_{50} values were calculated by the four-parameter logistic model (p < 0.05) [4].

Acknowledgements

MUR

Unione Europea - NextGenerationEU (MUR-Fondo Promozione e Sviluppo - D.M. 737/2021, INVIRCuM, University of Camerino, FAR 2022 PNR, and NGEU PNRR, D.M. n. 351/2022 M4C1 I4.1)

* * * * * * *

Funded by

the European Union

NextGenerationEU

$IC_{50} (\mu M) \pm S.D.$