Water isotopologues reveal versatile plant water sourcing strategies in a highly altered urban landscape

Erica Almance¹, Suprina Shrestha¹, Ricardo Sánchez-Murillo¹ & Brooke Best² 1. Tracer Hydrology Group, Department of Earth and Environmental Sciences, University of Texas at Arlington, TX, USA; 2. Fort Worth Botanic Garden and Botanical Research Institute of Texas, Fort Worth, TX, USA

I. Research Questions

Plants and the Urban Water Cycle

- What role do plants play in partitioning the urban water cycle? For example, what soil depths do representative urban tree species uptake water from?
- How does the plants' water sourcing change with seasons?

Centrifugation Method for Water Extraction

Does the extracted water amount have an impact on isotopic values?

Fort Worth Botanic Gardens

Palmex (rain

Suction lysimeters used to collect soil water

Figure 1: Upper panel shows daily precipitation and soil water content (0, 18, and 38 cm) (2023-2024). Lower panel shows air temperature and soil temperature (0, 18, and 38 cm).

HOBOlink data loggers used to collect soil temperature and soil moisture data

III. Methods

Weekly throughfall collection

Event-based precipitation samples: N = 509 (2022-2024)

Throughfall (rainfall reaching the ground through the canopy): N = 37 (2023-2024)

Weekly (lysimeters) and monthly (destructive water was collected

Total soil

117 of these

destructive soil

N = 161

were

samples.

water samples:

Monthly stem and root samples were collected from **Boxelder** laple, Cherr Laurel, and Elderberry

Centrifugation extraction and water isotope analysis

Total stem samples: N = 166**Total roots** samples: N = 65

Soil and plant samples were centrifuged at 11,000 rpm, 5 °C. for 1.5

UNIVERSITY OF TEXAS ARLINGTON

- (xylem), roots, and soil isotopic variability.
- Stem $\delta^{18}O$ values exhibited a strong temporal trend from high isotope variability during winter, fall, and summer, with more uniform isotope ratios during the spring season.

Roots exhibited increasingly enriched δ¹⁸O values from winter to summer, becoming depleted again in the fall. Contrary to the stems, roots did not experience depletion n the spring relative to the winter.

Upper right panel: *d*-excess (‰) stems, Lower right: d-excess (‰) roots.

Contact: Erica.almance@mavs.uta.edu sxs4148@mavs.uta.edu

at the University of Texas-Arlington (No. 314075).

