Kinetic studies on the catalytic mechanism of F₄₂₀-dependent glucose-6-phosphate dehydrogenase

Abstract

intermediates

medical relevance and will add knowledge to the field of this lesser known cofactor.

.. Squire, C. J., Moreland, N. J., and Baker, E. N., *J Biol Chem.* 2008.

Alaa Aziz, Ravi Ramkissoon, Dr. Lindsay Davis, Dr. Ghader Bashiri^b, Dr. Edward N. Baker^b, and Professor Kayunta Johnson-Winters University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, TX-76019 ^bSchool of Biological Sciences, University of Auckland, Auckland 1010, New Zealand

		СтС —				
		LTJ	<i>k</i> ₋₁ ES			
Enzyme	G6P K cat	G6P <i>K</i> m	^{G6P} <i>k</i> _{cat} / <i>K</i> _m	F420 <i>K</i> cat	^{F420} <i>K</i> _m	^{F420} <i>k</i> _{cat} / <i>K</i> _m
	(s ⁻¹)	(µM)	(M ⁻¹ s ⁻¹)	(s ⁻¹)	(µM)	(M⁻¹s⁻¹)
<i>wt</i> FGD ^a	1.4 ± 0.1	22 ± 2	$(6.0 \pm 0.5) \times 10^4$	1.4 ± 0.3	2.6 ± 0.3	$(6.0 \pm 1.0) \times 10^5$
H40A ^a	0.0016 ± 0.0001	27 ± 5	(5.0 ± 1.0) x 10 ²	0.0020 ± 0.0001	8.0 ± 2.0	$(4.0 \pm 0.6) \times 10^2$
H40Q	0.0040 ± 0.0001	0.35 ± 0.05	$(1.1 \pm 0.2) \times 10^{1}$	0.0060 ± 0.0003	2.2 ± 0.5	$(2.7 \pm 0.6) \times 10^2$
H260A	0.060 ± 0.002	0.0050 ± 0.0005	$(1.2 \pm 0.1) \times 10^2$	0.070 ± 0.004	0.180 ± 0.014	$(3.9 \pm 0.3) \times 10^2$
H260N	0.080 ± 0.002	0.3 ± 0.1	$(2.6 \pm 0.8) \times 10^2$	0.070 ± 0.005	0.50 ± 0.02	$(1.4 \pm 0.1) \times 10^{1}$
E13A	0.0020 ± 0.0001	55 ± 9	$(3.6 \pm 0.6) \times 10^2$	0.0030 ± 0.0007	12 ± 1	$(2.5 \pm 0.6) \times 10^{1}$
E13Q	0.097 ± 0.003	0.17 ± 0.03	$(5.7 \pm 0.1) \times 10^3$	0.090 ± 0.002	0.10 ± 0.05	$(9.0 \pm 0.4) \times 10^2$
I. A.; Bashiri, G.; E	Baker, E. N.; Johnson-Winters, K.	., Investigating the reaction mech	anism of F_{420} -dependent glucose	- -6-phosphate dehydrogenase fro	m Mycobacterium tuberculos	sis: kinetic analysis of the wild-typ

ГС	k _{cat}	Б
E9		Ρ
		G6P

Enzyme	G6P <i>K_d</i> (μΜ)	F ₄₂₀ K _d (nM)
wtFGD ^a	14 ± 4	71 ± 37
H40A	16 ± 3	194 ± 19
-140Q	54 ± 6	249 ± 111
1260A	7 ± 1	138 ± 29
1260N	49 ± 7	33 ± 8
E13A	15 ± 6	339 ± 70
E13Q	38 ± 10	258 ± 84

- role in F_{420} binding
- residues are involved in catalysis
- product release reaction

	log <i>k_{cat}</i> vs pH		log <i>k_{cat}/K</i> _m vs. pH		
FGD Variants	ρΚ 1	рК ₂	pK₁	рК ₂	
^a <i>wt</i> FGD	6.5 ± 0.3	8.0 ± 0.5	7.00 ± 0.03	7.00 ± 0.03	
H260A	6.9 ± 0.3	7.1 ± 0.3	6.50 ± 0.08	7.50 ± 0.08	
E13A	5.5 ± 0.3	8.6 ± 0.3	6.60 ± 0.02	7.50 ± 0.02	

Curve fit equation (wtFGD)

 $\log Y = \log \{Y_{H} / ((1+[H+] / K_{1}) + K_{2} / [H^{+}])\}$

 K_1 and K_2 is acid dissociation constants for the ascending and descending limbs

[H⁺] is the proton concentration at each

 K_1 = Acid dissociation constant for ascending limb of $\log k_{cat}$ or $\log k_{cat}/K_m$ vs

R= Ideal Gas Constant (8.314 J•mol-1•k-1)

l _{ion} ^b (kcal/mol)	Acid type			
5	Neutral	Parameter	log <i>k</i> _{cat}	$\log k_{cat}/K_{m}$
		ΔH _{ion} (kcal/mol)	7.0 ± 0.9	6.3 ± 0.6
1.5	Cationic	ΔS_{m} (cal/mol•k)	10.2 ± 3.0	7.5 ± 1.9
5-7	Neutral			
-13	Cationic			
		7		

Conclusions

• Amino acids H40, H260, and E13 are not involved in G6P binding. However, they do play a

• Due to decreased activity in the steady-state experiments, we are able to conclude that all

• E13 and H40 act as a catalytic dyad. H40 acts as an acid donating a proton to E13 and subsequently acts as a base abstracting a proton from G6P • Global analysis of *wt*FGD revealed the presence of intermediate and a fast chemistry/slow

Acknowledgments

Advisor: Dr. Kayunta Johnson-Winters **Current lab members**: Jamariya Howard, Md Sabid Ahamed Previous lab members: Dr. Mercy Oyugi, Dr. Lindsey Davis, Ana Alvarez

