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Abstract

This paper analyzes an approach to correcting spurious regressions involving unit-root nonstationary variables by

generalized least squares (GLS) using asymptotic theory. This analysis leads to a new robust estimator and a new test for

dynamic regressions. The robust estimator is consistent for structural parameters not just when the regression error is

stationary but also when it is unit-root nonstationary under certain conditions. We also develop a Hausman-type test for

the null hypothesis of cointegration for dynamic ordinary least squares (OLS) estimation. We demonstrate our estimation

and testing methods in three applications: (i) long-run money demand in the U.S., (ii) output convergence among industrial

and developing countries, and (iii) purchasing power parity (PPP) for traded and non-traded goods.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the unit-root literature, a regression is technically called a spurious regression when its stochastic error is
unit-root nonstationary. This is because the standard t-test tends to be spuriously significant even when the
regressor is statistically independent of the regressand in ordinary least squares (OLS). Monte Carlo
simulations have often been used to show that the spurious regression phenomenon occurs with regressions
involving unit-root nonstationary variables (see, e.g., Granger and Newbold, 1974; Nelson and Kang, 1981,
1983). Phillips (1986, 1998) and Durlauf and Phillips (1988) among others have studied the asymptotic
properties of estimators and test statistics for regression coefficients of these spurious regressions. This paper
analyzes an approach to correct spurious regressions involving unit-root nonstationary variables by
generalized least squares (GLS) using asymptotic theory. This analysis leads to a new robust estimator and a
new test for dynamic regressions. The robust estimator is consistent for structural parameters not just when
e front matter r 2007 Elsevier B.V. All rights reserved.
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the regression error is stationary but also when it is unit-root nonstationary under certain conditions. We also
develop a Hausman-type test for the null hypothesis of cointegration for dynamic OLS estimation.

Economic models often imply that certain variables are cointegrated. However, tests often fail to reject the
null hypothesis of no cointegration for these variables. One possible explanation of these test results is that the
error is unit-root nonstationary because of a nonstationary measurement error in one variable or
nonstationary omitted variables. In such cases, it is still possible to consistently estimate structural variables
under certain conditions. When the error is unit-root nonstationary but structural parameters can be
recovered, the regression is called a structural spurious regression.

As an example of a structural spurious regression, consider a regression to estimate the money demand
function when money is measured with a nonstationary error. Currency held by domestic economic agents for
legitimate transactions is very hard to measure, since currency is held by foreign residents and is also used for
black market transactions. Therefore money may be measured with a nonstationary error. As shown by Stock
and Watson (1993) among others, when the money demand function is stable in the long run, we have a
cointegrating regression if all variables are measured without error. If the variables are measured with
stationary measurement errors, we still have a cointegrating regression. If money is measured with a
nonstationary measurement error, however, we have a spurious regression. We can still recover structural
parameters under certain conditions. The crucial assumption is that the nonstationary measurement error is
not cointegrated with the regressors.

Another example of a structural spurious regression is a regression of money demand with nonstationary
omitted variables. Consider the case in which money demand is stable in the long run and a measure of shoe
leather costs of holding money is included as an argument. If an econometrician omits the measure of the shoe
leather costs from the money demand regression and the measure is nonstationary, then the regression error is
nonstationary. The shoe leather costs of holding money are related to the value of time and, therefore, to the
real wage rate. Because the real wage rate is nonstationary in standard dynamic stochastic general equilibrium
models with a nonstationary technological shock, the omitted measure of the shoe leather costs is likely to be
nonstationary. In this case, the money demand regression that omits the measure is spurious, but we can still
recover structural parameters under certain conditions. The crucial assumption is that the omitted variable is
not cointegrated with the regressors.

Our structural spurious regression approach is based on the GLS solution of the spurious regression problem
analyzed by Ogaki and Choi (2001),1 who use an exact small sample analysis based on the conditional
probability version of the Gauss–Markov Theorem. We develop asymptotic theory for two estimators motivated
by the GLS correction: the GLS corrected dynamic regression estimator and the feasible GLS (FGLS) corrected
dynamic regression estimator. Because Ogaki and Choi only used an exact small sample analysis, they did not
consider the FGLS corrected estimator. We will show these estimators to be consistent and asymptotically
normally distributed in spurious regressions. When the error term is in fact stationary and hence the variables
are cointegrated, the GLS corrected estimator is not efficient, but the FGLS corrected estimator, like the OLS
estimator, is superconsistent. Hence, FGLS estimation is a robust procedure with respect to the error
specification. The FGLS corrected estimator is asymptotically equivalent to the GLS corrected estimator in
spurious regressions, and it is asymptotically equivalent to the OLS estimator in cointegrating regressions.

In some applications, it is hard to determine whether or not the error in the regression is stationary or unit-
root nonstationary because test results are inconclusive. In such applications, the FGLS corrected estimator is
attractive because it is consistent in both situations as long as the method of the dynamic regression removes
the endogeneity problem.

This approach naturally motivates a Hausman-type test2 for the null hypothesis of cointegration against
the alternative hypothesis of no cointegration (or a spurious regression) in the dynamic OLS framework.
1Another approach would be to take the first difference to induce stationarity and then use instrumental variables. This is the approach

proposed by Lewbel and Ng (2005) for their nonstationary translog demand system. Our approach exploits the particular form of

endogeneity assumed by many authors in the cointegration literature and avoids the use of instrumental variables. Our approach yields

more efficient estimators as long as the particular form of endogeneity is correctly specified. This is especially important when weak

instruments cause problems.
2This test can also be called a Durbin–Wu–Hausman type test as it is closely related to ideas and tests in Durbin (1954) and Wu (1973) as

well as a family of tests proposed by Hausman (1978).
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We construct this test by noting that while both the dynamic OLS and GLS corrected dynamic regression
estimators are consistent in cointegration estimation, the dynamic OLS estimator is more efficient.3 On the
other hand, when the regression is spurious only the GLS corrected dynamic regression estimator is consistent.
Hence, we could do a cointegration test based on the specification on the error. We show that under the null
hypothesis of cointegration the test statistics have a w2 limit distribution, while under the alternative
hypothesis of a spurious regression the test statistics diverge.

In some applications the assumption that the spurious regression is structural under the alternative
hypothesis is not very attractive. If the violation of cointegration arises for reasons other than nonstationary
measurement error or omitted variables, it is hard to believe that the resulting spurious regression is structural.
For this reason we relax the assumption that the spurious regression is structural and show that the Hausman-
type cointegration test statistic still diverges under the alternative hypothesis.

Dynamic OLS is used in many applications of cointegration. However, few tests for cointegration have been
developed for dynamic OLS, with the exception of Shin’s (1994) test. As in Phillips and Ouliaris (1990), the
popular augmented Dickey–Fuller (ADF) test for the null hypothesis of no cointegration was originally designed
to be applied to the residual from static OLS rather than the residual from dynamic OLS. Because the static OLS
and dynamic OLS estimates are often substantially different, it is desirable to have a test for cointegration
applicable to dynamic OLS. Another aspect of our Hausman-type test is that it is for the null hypothesis of
cointegration. Ogaki and Park (1998) argue that it is desirable to test the null hypothesis of cointegration rather
than that of no cointegration in many applications where economic models imply cointegration.

Using Monte Carlo experiments, we compare the finite sample performance of the Hausman-type test with
the test proposed by Shin (1994), which is a locally best invariant test for the null of zero variance of a random
walk component in the disturbances. According to the experiment results, the Hausman-type test is dominant
in both size and power up to the sample size of 300. Shin’s test becomes more powerful when the sample size
increases, but only at the cost of higher size distortion.

In some applications, it is appropriate to consider the possibility that measurement error is Ið1Þ and is not
cointegrated with the regressors. For these applications, the ADF test is applicable under the null hypothesis
of a structural spurious regression, as shown by Hu (2006). For such applications, we recommend that both
the ADF test and the Hausman-type test be applied because it is not clear which null hypothesis is more
appropriate.

We demonstrate our estimation and testing methods in three applications: (i) long-run money demand in the
U.S., (ii) output convergence among industrial and developing countries, and (iii) purchasing power parity
(PPP) for traded and non-traded goods. In the first application, we focus on estimating unknown structural
parameters, while in the last two applications we purport to testing for cointegration with the Hausman-type
cointegration test where we relax the assumption that the spurious regression under the alternative hypothesis
is structural.

The rest of the paper is organized as follows. Section 2 gives econometric analysis of the model, including
asymptotic theories and finite sample simulation studies. Section 3 presents models of nonstationary
measurement error and nonstationary omitted variables as well as the empirical results of three applications.
Section 4 contains concluding remarks.

2. The econometric model

Consider the regression model

yt ¼ b0xt þ Zt, (1)

where fxtg is an m-vector integrated process generated by

Dxit ¼ vit.
3After completing the first draft, it has come to our attention that the Hausman-type test was originally proposed by Fernández-Macho

and Mariel (1994) for the static OLS cointegrating regression with strict exogeneity and without any serial correlation. The test has not

been popular probably because these assumptions are hard to justify in applications, and because the test was not developed for dynamic

regressions.
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The error term in (1) is assumed to be

Zt ¼
Xm

i¼1

Xk

j¼�k

gi;jvi;t�j þ et, ð2Þ

et ¼ ret�1 þ ut. ð3Þ

Assumption 1. Assume that vt ¼ ðv1t; . . . ; vmtÞ
0 and ut are zero mean stationary processes with Ejvitj

ao1,
Ejutj

ao1 for some a42, and strong mixing with size �a=ða� 2Þ. We also assume that the dynamic regression
method removes the endogeneity problem. That is, EðutvsÞ ¼ 0 for all t; s. We call this the strict exogeneity
assumption for the dynamic regression.

The conditions on vt and ut ensure the invariance principles: for r 2 ½0; 1�, n�1=2
P½nr�

t¼1vt!dV ðrÞ and

n�1=2
P½nr�

t¼1ut!dUðrÞ, where V ðrÞ is an m-vector Brownian motion with covariance
P1

j¼�1Eðvtv
0
t�jÞ and UðrÞ is

a Brownian motion with variance
P1

j¼�1Eðutut�jÞ. The functional central limit theorem holds for weaker

assumptions than assumed here (de Jong and Davidson, 2000), but the conditions assumed above are general
enough to include many stationary Gaussian or non-Gaussian ARMA processes that are commonly assumed
in empirical modeling.

Let vt ¼ ðDx1;t�k; . . . ;Dx1;t; . . . ;Dx1;tþk; . . . ;Dxm;t�k; . . . ;Dxm;t; . . . ;Dxm;tþkÞ
0, and c ¼ ðg1;�k; . . . ; g1;0; . . . ;

g1;k; . . . ; gm;�k; . . . ; gm;0; . . . ; gm;kÞ
0. We estimate the structural parameter b in the regression

yt ¼ b0xt þ c0vt þ et. (4)

The inference procedure about b differs according to the different assumptions on the error term et in (3).
When jrjo1, et is stationary, and hence regression (4) is a cointegration regression with serially correlated
error. When r ¼ 1, et is a unit-root nonstationary process and the OLS regression is spurious. Both models are
important in empirical studies in macroeconomics and finance.

In the next two sections, we will study the asymptotic properties of different estimation procedures under
these two assumptions. Under the assumption that r ¼ 1, OLS is not consistent while both the GLS correction
and FGLS correction will give consistent and asymptotically equivalent estimators. Under the assumption
that jrjo1, the GLS corrected estimator is not efficient as it is

ffiffiffi
n
p

convergent, but the FGLS estimator is n

convergent and asymptotically equivalent to the OLS estimator. Therefore, FGLS is robust with respect to the
error specifications (r ¼ 1 or jrjo1).
2.1. Regressions with Ið1Þ error

In this section we consider the situation when the error term is Ið1Þ, i.e., r ¼ 1 in (3). The estimation
methods we study are dynamic OLS, the GLS correction, and the FGLS correction.
2.1.1. The dynamic OLS spurious estimation

We start with the dynamic OLS estimation of regression (4). Under the assumption of r ¼ 1, this regression
is spurious since for any value of b the error term is always Ið1Þ. In Appendix A, we show that the DOLS
estimator b̂dols has the following limit distribution:

ðb̂dols � b0Þ!d

Z 1

0

V ðrÞV ðrÞ0 dr

� ��1 Z 1

0

V ðrÞUðrÞdr

� �
. (5)

ĉ in the estimation is also inconsistent with ĉ� c0 ¼ Opð1Þ. As remarked in Phillips (1986, 1989), in
spurious regressions the noise is as strong as the signal. Hence, uncertainty about b persists in the limiting
distributions.
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2.1.2. GLS corrected estimation

When r ¼ 1, we can filter all variables in regression (4) by taking the full first difference and use OLS to
estimate

Dyt ¼ b0Dxt þ c0Dvt þ ut ¼ y0Dzt þ ut, (6)

where y ¼ ðb0; c0Þ0 and zt ¼ ðx
0
t; v
0
tÞ
0. This procedure can be viewed as GLS corrected estimation.4

If we let ~ydgls denote the GLS corrected estimator, then we can show thatffiffiffi
n
p
ð~ydgls � y0Þ!dNð0;OÞ, (7)

where O ¼ Q�1LQ�1 with Q ¼ EðDztDz0tÞ and L being the long-run variance matrix of Dztut. Thus b in a
structural spurious regression can be consistently estimated (jointly with c), and the estimators are
asymptotically normal. In the special case when m ¼ 1, fv1tg and futg are i:i:d: sequences and Zt ¼ et, (7) gives
that ffiffiffi

n
p
ð~ydgls � y0Þ!dNð0; s2u=s

2
1vÞ,

where s2u and s21v are the variances of ut and v1t, respectively.
2.1.3. The FGLS estimation

To use GLS to estimate a regression with serial correlation in empirical work, a Cochrane–Orcutt FGLS
procedure is usually adopted. This procedure also works for spurious regressions as shown by Phillips and
Hodgson (1994). They show that the FGLS estimator is asymptotically equivalent to that in the differenced
regression when the error is unit-root nonstationary. In the present paper, we will show that the FGLS
correction to the dynamic regression provides a consistent and robust estimator for structural spurious
regressions.

Let the residual from the OLS regression (4) be denoted by êt,

êt ¼ yt � b̂0nxt � ĉ0nvt.

To conduct the Cochrane–Orcutt GLS estimation, we first run an AR(1) regression of êt,

êt ¼ r̂nêt�1 þ ût. (8)

It can be shown that nðr̂n � 1Þ ¼ Opð1Þ. Conduct the following Cochrane–Orcutt transformation of the data:

~yt ¼ yt � r̂nyt�1; ~xt ¼ xt � r̂nxt�1; ~vt ¼ vt � r̂nvt�1. (9)

Then consider OLS estimation of the regression

~yt ¼ b0 ~xt þ c0 ~vt þ error ¼ y0 ~zt þ error, (10)

where ~zt ¼ ð ~x0t; ~v
0
tÞ
0. The OLS estimator of y in (10) is computed as

~yfgls ¼
Xn

t¼1

~zt ~z
0
t

" #�1 Xn

t¼1

~zt ~yt

" #
. (11)

The limiting distribution of ~yfgls can be shown to be the same as in (7). Intuitively, even though the dynamic
OLS estimator is inconsistent, the residual is unit-root nonstationary because no linear combination of yt and
xt is stationary. Therefore, rn approaches unity in the limit, and ~zt behaves asymptotically equivalently to Dzt.
A detailed proof of results in this section is given in Appendix A.
4This is a conventional GLS procedure when ut is i:i:d:When ut is serially correlated as in our approach, we name this procedure GLS

corrected dynamic estimation.
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2.2. Regressions with Ið0Þ error

In this section, we consider the asymptotic distributions of the three estimators (the DOLS estimator, the GLS
corrected estimator, and the FGLS corrected estimator) under the assumption of cointegration, i.e., jrjo1 in (3).

2.2.1. The dynamic OLS estimation

Under the assumption of cointegration, the DGP of yt is

yt ¼ b0xt þ c0vt þ et; et ¼ ret�1 þ ut; jrjo1. (12)

Applying the invariance principle, for r 2 ½0; 1�, n�1=2
P½nr�

t¼1et!dEðrÞ, where EðrÞ is a Brownian motion with

variance
P1

j¼�1Eðetet�jÞ. The limiting distribution of the OLS estimator of b, which is asymptotically

independent of ĉn, is known to be

nðb̂dols � b0Þ!d

Z 1

0

V ðrÞV ðrÞ0 dr

� ��1 Z 1

0

V ðrÞdEðrÞ

� �
. (13)

2.2.2. GLS corrected estimation

We now take the full first difference as we did in the spurious regressions, the regression becomes

Dyt ¼ b0Dxt þ c0Dvt þ et � et�1 ¼ y0Dzt þ et � et�1. (14)

Note that this transformation leads to a loss in efficiency since the estimator ~bdgls is now
ffiffiffi
n
p

convergent
rather than n convergent as the DOLS estimator is. With some minor revisions to equation (7), the limiting
distribution of the estimator in this case can be written asffiffiffi

n
p
ð~ydgls � y0Þ!dNð0;O�Þ, (15)

where O� ¼ Q�1L�Q�1. Q is again defined as Q ¼ EðDztDz0tÞ and L� is the long-run variance matrix of vector
DztDet. In the special case when m ¼ 1, fv1tg and futg are i:i:d: sequences, Zt ¼ et, and O� ¼ 2s2eð1� ceÞ=s

2
1v,

where ce is the first-order autocorrelation coefficient of fetg.

2.2.3. The FGLS estimation

Instead of taking the full first difference, if we estimate the autoregression coefficient in the error and use
this estimator to filter all sequences, we will obtain an estimator that is asymptotically equivalent to the DOLS
estimator. Intuitively, in the case when the error et ¼ ut is serially uncorrelated, the AR(1) coefficient r̂n will
converge to zero, and hence the transformed regression will be asymptotically equivalent to the original
regression. If, on the other hand, the error is stationary and serially correlated, then the AR(1) coefficient will
be less than unity, and, as shown in Phillips and Park (1988), the GLS estimator and the OLS estimator in a
cointegration regression are asymptotically equivalent.

If we conduct the Cochrane–Orcutt transformation (9) and estimate b in the regression

~yt ¼
~b
0

n ~xt þ ~c
0
n ~vt þ error, (16)

then Appendix B shows that the limiting distribution of ~bn is the same as the limit of the OLS estimator
given in (13).

2.3. FGLS: a robust estimator with respect to the order of errors

From our discussions on the FGLS estimator in Sections 2.1.3 and 2.2.3, we can summarize the FGLS
corrected estimator in the following proposition:

Proposition 1. Suppose Assumption 1 holds. In spurious regressions, the FGLS corrected estimator is

asymptotically equivalent to the GLS corrected estimator, and its limit distribution can be written asffiffiffi
n
p
ð~yfgls � y0Þ!dNð0;OÞ.
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In cointegration regressions, the FGLS corrected estimator is asymptotically equivalent to the DOLS

estimator, and its limit distribution can be written as

nðb̂fgls � b0Þ!d

Z 1

0

V ðrÞV ðrÞ0 dr

� ��1 Z 1

0

V ðrÞdEðrÞ

� �
.

So FGLS is not only valid when the regression is spurious but also asymptotically efficient when the
regression is cointegration.

Remarks.
1.
Ta

Th

r

r ¼

r ¼

r ¼
If a constant is added to (4), we can show that the GLS or FGLS corrected estimators are asymptotically
equivalent to that given in (7) under the assumption of spurious regressions.
2.
 If a trend term is added to (4) (this is the case in which the deterministic cointegration restriction is not
satisfied in the terminology of Ogaki and Park, 1998), then the GLS corrected estimation leads to a singular
covariance matrix for the estimator when r is less than one in absolute value. This is because a trend term in
(4) leads to a constant term in the first differenced regression (14) and because the long-run variance of the
first difference of et multiplied by a constant is zero. Therefore, our methods do not apply to regressions
with time trends.
3.
 Under some conditions, the methods proposed in this paper also apply to other model configurations, such
as regressions where the regressors have drifts. These extensions will be studied in future work.

2.4. Finite sample performance of the three estimators

From the above analysis, we show that FGLS corrected estimation is a robust procedure with respect to
error specifications. In this section, we use simulations to study its finite sample performances compared to the
other two estimators. In the simulation we consider the case when xt is a scalar variable and generate vt and ut

from two independent standard normal distributions while letting et ¼ ret�1 þ ut. The structural parameter is
set to b ¼ 2, and c0vt ¼ 0:5vt. The number of iterations in each simulation is 5000, and in each replication
100þ n observations are generated, of which the first 100 observations are discarded.

Table 1 shows the bias and the mean square error (MSE) of all three estimators for r ¼ 0; 0:95, and 1. When
r ¼ 0, the regression is cointegration with i:i:d: error. It is clear that the DOLS estimator is the best one when
n ¼ 50. When n reaches 100, however, the FGLS estimator becomes almost as good as the DOLS estimator.
When r ¼ 0:95, the regression is cointegration with serially correlated error. In this case, the GLS and FGLS
estimators are much better than the DOLS estimator. When the sample size increases, the FGLS estimator
ble 1

e bias and square root of the mean square error of three estimators

n DOLS estimator GLS corrected estimator FGLS corrected estimator

Bias Square root of MSE Bias Square root of MSE Bias Square root of MSE

0 n ¼ 50 �0.0000 0.0290 0.0031 0.2156 �0.0000 0.0296

n ¼ 100 �0.0002 0.0169 0.0004 0.1448 �0.0002 0.0170

n ¼ 500 �0.0000 0.0040 0.0010 0.0634 �0.0000 0.0040

0:95 n ¼ 50 �0.0007 0.3555 0.0019 0.2104 0.0000 0.2162

n ¼ 100 0.0070 0.2415 �0.0010 0.1472 0.0036 0.1375

n ¼ 500 0.0006 0.0773 �0.0007 0.0637 �0.0000 0.0475

1 n ¼ 50 �0.0347 1.4769 0.0024 0.2103 �0.0095 0.5968

n ¼ 100 �0.0113 1.2809 0.0028 0.1439 0.0031 0.3635

n ¼ 500 �0.0086 0.9895 0.0003 0.0643 �0.0011 0.1167
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Fig. 1. Comparison of three estimators when n ¼ 100 and r! 1.
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becomes the best one. Finally, when r ¼ 1, the regression is spurious, and, as expected, the GLS corrected
estimator performs best.

Fig. 1 plots the empirical distribution of these three estimators (minus the true value) when n ¼ 100 and as r
approaches 1. The figures show that the DOLS estimator becomes flatter and flatter as r! 1. The GLS
estimator remains largely the same for r close to unity. The FGLS estimator becomes a bit flatter when r
reaches 1, but it still shows a clear peak around zero.

From the finite sample performance, it can be seen that the FGLS estimator is almost as good as the DOLS
estimator in cointegration and significantly outperforms the DOLS estimator in spurious regressions. The
GLS estimator is the best when r approaches 1, but it suffers from a significant loss in efficiency when r is
small. So we may want to take the full difference only when we are very sure that the error is unit root
nonstationary. Otherwise, the FGLS estimator is a good choice.

2.5. Hausman specification test for cointegration

2.5.1. The test statistic and its asymptotic properties

In this section, we construct a Hausman-type cointegration test based on the difference of two estimators:
an OLS estimator (b̂dolsÞ and a GLS corrected estimator ( ~bdgls). This is equivalent to comparing estimators in a
level regression and in a differenced regression. The test is for the null of cointegrating relationships against
the alternative of a spurious regression:

H0: jrjo1 against HA: r ¼ 1.
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Our discussions so far suggest that under the null of cointegration, both OLS and GLS are consistent but
the OLS estimator is more efficient. Under the alternative of a spurious regression, however, only the GLS
corrected estimator is consistent.

Let V̂b denote a consistent estimator for the asymptotic variance of
ffiffiffi
n
p
ð ~bdgls � bÞ. Under our assumptions,

it converges to the corresponding submatrix of O� under the null hypothesis and to the corresponding
submatrix of O under the alternative. For example, when m ¼ 1, fv1tg and futg are independent i:i:d:, and

Zt ¼ et, take V̂b ¼
1
n

Pn
t¼1ŵ

2
t

� �
= 1

n

Pn
t¼1Dx2

t

� �
, where ŵt denotes the residuals from OLS estimation of the

differenced regression. Under the null of cointegration, V̂b!p2s2eð1� ceÞ=s
2
1v. Under the alternative of

spurious regression, V̂b!ps2u=s
2
1v.

We define the Hausman-type test statistic as:

hn ¼ nð ~bdgls � b̂dolsÞ
0V̂�1b ð

~bdgls � b̂dolsÞ. (17)

Proposition 2. Suppose Assumption 1 holds. Under the null hypothesis of cointegration, hn!dw2ðmÞ. Under the

alternative of spurious regressions, hn ¼ OpðnÞ.

Proof. Under the null of cointegration,ffiffiffi
n
p
ð ~bdgls � b̂dolsÞ ¼

ffiffiffi
n
p
ð ~bdgls � b0Þ �

ffiffiffi
n
p
ðb̂dols � b0Þ

¼
ffiffiffi
n
p
ð ~bdgls � b0Þ þ opð1Þ

! dNð0;VbÞ,

where Vb is the asymptotic variance of ~bdgls under the assumption of cointegration. Therefore, if V̂b is a
consistent estimator for Vb,

hn ¼ nð ~bdgls � b̂dolsÞ
0
ðV̂bÞ

�1
ð ~bdgls � b̂dolsÞ!dw2ðmÞ.

Under the alternative of spurious regressions,ffiffiffi
n
p
ð ~bdgls � b̂dolsÞ ¼

ffiffiffi
n
p
ð ~bdgls � b0Þ �

ffiffiffi
n
p
ðb̂dols � b0Þ

¼ Opð1Þ þOpð
ffiffiffi
n
p
Þ

¼ Opð
ffiffiffi
n
p
Þ.

Hence, hn ¼ OpðnÞ under the alternative.
We can extend the test to allow endogeneity under the alternative. Consider the following DGP:

yt ¼ b0xt þ c0vt þ fst þ et,

et ¼ ret�1 þ ut,

where fstg satisfies the same conditions as ut and vt but is correlated with fvtg. The statistic defined in (17) can
be applied to test the hypotheses:

H 00: jrjo1 and f ¼ 0

against H 0A: r ¼ 1 and fa0:

The asymptotics of hn under the null H 00 are the same as that under H0. Under the alternative H 0A, we show
in Appendix C that the DOLS estimator has the same asymptotic distribution as that under HA and
hn ¼ OpðnÞ. Therefore, this Hausman-type test is consistent for the null hypothesis of cointegration against the
alternative of spurious regressions, regardless of whether the exogeneity assumption holds under the
alternative.

2.5.2. Finite sample properties of the Hausman-type cointegration test

Before applying the Hausman-type cointegration test empirically, it will be instructive to examine its finite
sample properties in comparison with other comparable tests under the same null hypothesis. To this end, we
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Table 2

Finite sample performance of the Hausman-type cointegration test

T Hausman-type test Shin’s test

Power Size (5%) Power Size (5%)

50 0.621 0.114 0.249 0.141

100 0.688 0.072 0.402 0.171

200 0.754 0.050 0.652 0.199

300 0.783 0.039 0.775 0.184

500 0.816 0.040 0.882 0.181

Note: The Hausman-type cointegration test is stipulated in Section 2.5. Nonparametric estimator of long run variance used is based on the

QS kernel with the bandwidth of ‘integer 8ðT=100Þ1=4
h i

’.
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conduct a small simulation experiment based on the following dynamic regression model:

yt ¼ g1Dxtþ1 þ bxt þ g2Dxt�1 þ et, ð18Þ

et ¼ ret�1 þ ut, ð19Þ

where g1 ¼ 0:3, b ¼ 2, g2 ¼ �0:5, and setting r ¼ 0:9 for the size performance and r ¼ 1 for the power
performance. We consider sample sizes of n 2 f50; 100; 200; 300; 500g that are commonly encountered in
empirical analysis. In the simulations, pseudo-random numbers are generated using the GAUSS (version 6.0)
RNDNS procedures. Each simulation run is carried out with 5000 replications. At each replication, 100þ n

random numbers are generated, of which the first 100 observations are discarded to avoid a start-up effect.
Table 2 reports selected finite sample properties of the Hausman-type cointegration test together with a

residual-based test under the null of cointegration due to Shin (1994, Shin’s test), who extended the KPSS test
in the parametrically corrected cointegrating regression. In the simulations, the lengths of the lead and lag
terms for DOLS and DGLS are chosen by the BIC rule.5 A nonparametric estimation method for long-run
variance estimation is employed using the QS kernel with the bandwidth of ‘integer ½8ðn=100Þ1=4�’. The results
in Table 2 illustrate two points. First, the empirical size of the Hausman-type test is close to the nominal size,
in particular, when the sample size is relatively large, whereas Shin’s test suffers from a serious oversize
problem. Second, in terms of power, the Hausman-type test dominates Shin’s test for moderate sample sizes
that are very likely to be encountered empirically. Shin’s test seems more powerful when n is relatively large,
but only at the cost of severe size distortions. Overall, our simulation results provide evidence in favor of the
Hausman-type test.

3. Empirical applications

In this section we apply the GLS-type correction methods and the Hausman-type cointegration test to
analyze three macroeconomic issues: (i) long run money demand in the U.S., (ii) output convergence among
industrial and developing countries, and (iii) PPP for traded and non-traded goods. The main purpose of the
first application is to illustrate the spurious regression approach to estimating unknown structural parameters.
Identification of the structural parameters in this application is based on nonstationary measurement error or
nonstationary omitted variables that are explained in the following two sections. The main purpose of the
other two applications is to apply the Hausman-type cointegration test. The alternative hypothesis is not taken
as structural spurious regressions in the last two applications.

3.1. A model of nonstationary measurement error

Consider a set of variables that are cointegrated. One model of a structural spurious regression is based on
the case in which one of the variables is measured with nonstationary measurement error. Let y0

t be the true
5It is an interesting research topic to investigate the performance of various lag length selection rules, but would be beyond the scope of

this paper.
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value of yt, and assume that

y0
t ¼ b0xt þ c00vt þ e0t (20)

is a dynamic cointegrating regression that satisfies the strict exogeneity assumption.6 Let yt be the measured
value of y0

t , and assume that the measurement error satisfies

yt � y0
t ¼ cm0vt þ em

t , (21)

where em
t is Ið1Þ and its expectation conditional on xs for all s is zero. Here, the crucial assumption for

identification is that the measurement error is not cointegrated with xt. Then

yt ¼ b0xt þ c0vt þ et, (22)

where c ¼ c0 þ cm, and et is Ið1Þ and satisfies the strict exogeneity assumption.7

3.2. A model of nonstationary omitted variables

Another case that leads to a structural spurious regression is a model of nonstationary omitted variables.

yt ¼ b0xt þ y0x0
t þ c10vt þ c00v0t þ e0t , (23)

where x0
t is a vector of Ið1Þ variables and v0t is a vector of leads and lags of the first differences of x0

t .
We imagine that the econometrician omits x0

t from his regression. We assume that

y0x0
t þ c00v0t ¼ cm0vt þ em

t , (24)

where em
t is Ið1Þ and its expectation conditional on xs for all s is zero. Here, the crucial assumption for

identification is that the x0
t is not cointegrated with xt. Then

yt ¼ b0xt þ c0vt þ et, (25)

where c ¼ c1 þ cm, and et is Ið1Þ and satisfies the strict exogeneity assumption. This model is observationally
equivalent to the model of nonstationary measurement error within our single equation approach. However,
the assumptions made in both cases are conceptually different.

3.3. U.S. money demand

The long-run money demand function has often been estimated under a cointegrating restriction among real
balances, real income, and the interest rate. The restriction is legitimate if the money demand function is stable
in the long run and if all variables are measured without nonstationary error. Indeed, Stock and Watson
(1993) found supportive evidence of stable long-run M1 demand by estimating cointegrating vectors.
However, if either money is measured with a nonstationary measurement error or nonstationary omitted
variables exist, then we have a spurious regression, and the estimation results based on a cointegration
regression are questionable.

First, consider the model of a nonstationary measurement error described above. To be specific, we follow
Stock and Watson (1993) and assume that the dynamic regression error is stationary and the strict exogeneity
assumption holds for the dynamic regression error when money is correctly measured. We then assume that
money is measured with a multiplicative measurement error. We assume that the log measurement error is
unit-root nonstationary and that the residuals of the projection of the log measurement error on the leads and
lags of the regressors in the dynamic regression satisfy the strict exogeneity assumption. Given that a large
component of the measurement error is arguably currency held by foreign residents and black market
participants, the log measurement error is likely to be very persistent. Therefore, the assumption that the log
measurement error is unit-root nonstationary may be at least a good approximation. The assumption that the
6Note that any variable can be chosen as the regressand in a cointegrating regression. Therefore, we choose the variable with

nonstationary measurement error as the regressand.
7Here, we assume that the dimensions of c0 and cm are the same without loss of generality because we can add zeros as elements of c0

and cm as needed.
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measurement error is not cointegrated with the regressors is plausible if the error is mainly due to currency
held by foreign residents.

Second, consider the model of nonstationary omitted variables. A possible omitted variable is a measure of
the ‘‘shoe leather cost’’ that represents transaction costs. For example, in the literature of money demand
estimation, the real wage rate has sometimes been used as a regressor for this reason. Because the real wage
rate is Ið1Þ in standard dynamic stochastic general equilibrium models with an Ið1Þ technological shock, the
omitted measure of the ‘‘shoe leather cost’’ is nonstationary. If the real wage rate is the omitted variable, the
assumption that it is not cointegrated with the regressors that include log income is not very plausible.
However, it is possible that the true omitted variable that represents the ‘‘shoe leather cost’’ is not the real
wage rate and is not cointegrated with log income.

We apply our GLS correction method to estimate the long-run income and interest elasticities of M1
demand during the period of 1947–1997.8 To this end, the regression equations are set up with the real money
balance (M=P) as regressand and income (y) and interest (i) as regressors. Following Stock and Watson
(1993), the annual time series for M1 deflated by the net national product price deflator is used for M=P, the
real net national product for y and the six-month commercial paper rate in percentages for i. M=P and y are in
logarithms. Three different regression equations are considered depending on the measures of interest. We
have tried the following three functional forms (equation 1 has been studied by Stock and Watson, 1993):

ln
M

P

� �
t

¼ aþ b lnðytÞ þ git þ et ðequation 1Þ,

ln
M

P

� �
t

¼ aþ b lnðytÞ þ g lnðitÞ þ et ðequation 2Þ,

ln
M

P

� �
t

¼ aþ b lnðytÞ þ g ln
1þ it

it

� �
þ et ðequation 3Þ.

It is worth noting that the liquidity trap is possible for the latter two functional forms as emphasized by Bae
and de Jong (2007).9 When the data contain periods with very low nominal interest rates, the latter two
functional forms may be more appropriate.

Table 3 presents the point estimates for b (income elasticity of money demand) and g based on the three
estimators under scrutiny: the dynamic OLS estimator, the GLS corrected dynamic regression estimator, and
the FGLS corrected dynamic regression estimator.10 Several features emerge from the table. First, all the
estimated coefficients have theoretically ‘correct’ signs: positive signs for income elasticities and negative signs
for g for the first two functional forms and positive signs for g for the third functional form. Second, the GLS
corrected estimates of the income elasticity are implausibly low for all three functional forms for low values of
k and increase to more plausible values near one as k increases.11 The fact that the results become more
plausible as k increases suggests that the endogeneity correction of dynamic regressions works in this
application for moderately large values of k such as three and four. The results for lower values of k are
consistent with those of the low income elasticity estimates of first differenced regressions that were used in the
literature before 1980. Therefore, the estimators in the old literature of first differenced regressions
before cointegration became popular are likely to be downward biased because of the endogeneity problem.
Third, all point estimates of the three estimators are very similar, and the Hausman-type test fails to reject the
null hypothesis of cointegration for large enough values of k. Hence, there is little evidence against
cointegration. However, it should be noted that a small random walk component is very hard to detect
8Readers are referred to Appendix D for the empirical guidelines on the use of estimation and testing techniques developed in this paper.

We thank Youngsoo Bae for providing the data used in Bae and de Jong (2007) to us. This data set extends Stock and Watson’s data up to

1997 when the six-month commercial rate was discontinued.
9Bae and de Jong point out that nonlinear cointegration methods are needed if we are to evaluate these different functional forms with a

common set of assumptions. It is beyond the scope of the present paper to develop spurious regression methods for nonlinear

cointegration models.
10For the FGLS corrected dynamic regression estimator, the serial correlation coefficient of the error term is estimated before being

applied to the Cochrane–Orcutt transformation. This coefficient is assumed to be unity in the GLS corrected dynamic regression estimator

which is equivalent to regressing the first difference of variables without a constant term.
11When k is increased beyond five (the maximum k in the table), point estimates for income elasticity estimates stabilize around unity.
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Table 3

Application to long tun U.S. money demand

Estimator k Equation 1 Equation 2 Equation 3

b̂ ĝ b̂ ĝ b̂ ĝ

DOLS 0 0.891 (0.080) �0.084 (0.025) 0.860 (0.061) �0.307 (0.069) 0.858 (0.061) 0.316 (0.071)

1 0.907 (0.079) �0.092 (0.025) 0.861 (0.047) �0.313 (0.053) 0.859 (0.047) 0.322 (0.054)

2 0.924 (0.074) �0.098 (0.024) 0.863 (0.040) �0.321 (0.044) 0.861 (0.040) 0.329 (0.046)

3 0.938 (0.059) �0.102 (0.019) 0.865 (0.031) �0.327 (0.034) 0.862 (0.031) 0.336 (0.036)

4 0.945 (0.062) �0.104 (0.020) 0.861 (0.029) �0.330 (0.033) 0.858 (0.030) 0.339 (0.034)

5 0.954 (0.056) �0.108 (0.018) 0.863 (0.029) �0.339 (0.033) 0.860 (0.029) 0.348 (0.034)

BIC

[lag] [4] [5] [5]

GLS-corrected 0 0.405 (0.080) �0.014 (0.004) 0.415 (0.079) �0.086 (0.021) 0.415 (0.079) 0.089 (0.022)

1 0.639 (0.113) �0.029 (0.009) 0.664 (0.109) �0.191 (0.042) 0.664 (0.109) 0.199 (0.044)

2 0.799 (0.127) �0.047 (0.012) 0.815 (0.123) �0.241(0.049) 0.815 (0.123) 0.249 (0.051)

3 0.811 (0.137) �0.058 (0.015) 0.850 (0.131) �0.270 (0.057) 0.849 (0.131) 0.278 (0.058)

4 0.877 (0.149) �0.066 (0.018) 0.870 (0.142) �0.262 (0.062) 0.868 (0.142) 0.267 (0.064)

5 0.932 (0.160) �0.070 (0.019) 0.908 (0.149) �0.284 (0.065) 0.904 (0.148) 0.291 (0.067)

BIC

[lag] [2] [2] [2]

FGLS-corrected AR(1) 0 0.887 (0.050) �0.078 (0.023) 0.862 (0.044) �0.288 (0.075) 0.861 (0.158) 0.296 (0.116)

1 0.757 (0.054) �0.041 (0.009) 0.826 (0.036) �0.264 (0.032) 0.826 (0.035) 0.273 (0.032)

2 0.834 (0.054) �0.063 (0.011) 0.862 (0.031) �0.303 (0.030) 0.860 (0.031) 0.311 (0.031)

3 0.884 (0.047) �0.082 (0.012) 0.874 (0.026) �0.325 (0.026) 0.872 (0.026) 0.334 (0.027)

4 0.910 (0.053) �0.089 (0.013) 0.874 (0.027) �0.327 (0.027) 0.871 (0.027) 0.335 (0.028)

5 0.944 (0.046) �0.100 (0.012) 0.879 (0.027) �0.340 (0.027) 0.876 (0.027) 0.349 (0.028)

BIC

[lag] [2] [2] [2]

FGLS-corrected AR(2) 0 0.887 (0.050) �0.078 (0.023) 0.862 (0.044) �0.288 (0.075) 0.861 (0.158) 0.296 (0.116)

1 0.774 (0.052) �0.043 (0.009) 0.825 (0.038) �0.261 (0.032) 0.825 (0.037) 0.270 (0.033)

2 0.847 (0.048) �0.068 (0.011) 0.861 (0.028) �0.307 (0.028) 0.859 (0.028) 0.316 (0.029)

3 0.909 (0.041) �0.090 (0.011) 0.877 (0.024) �0.328 (0.025) 0.875 (0.025) 0.336 (0.026)

4 0.937 (0.043) �0.098 (0.012) 0.877 (0.025) �0.330 (0.025) 0.874 (0.025) 0.338 (0.026)

5 0.960 (0.039) �0.105 (0.011) 0.878 (0.021) �0.343 (0.022) 0.874 (0.022) 0.352 (0.023)

BIC

[lag] [2] [5] [5]

HAUSMAN test 0 3.510 2.744 2.677

1 0.655 0.100 0.092

2 0.656 0.010 0.007

3 0.166 0.004 0.005

4 0.015 0.099 0.098

5 0.468 0.115 0.115

ADF-BASED test 2 �3.288z �3.891z �3.850z

Note:

ln
M

P

� �
t

¼ aþ b lnðytÞ þ git þ et ðequation 1Þ,

ln
M

P

� �
t

¼ aþ b lnðytÞ þ g lnðitÞ þ et ðequation 2Þ,

ln
M

P

� �
t

¼ aþ b lnðytÞ þ g ln
1þ it

it

� �
þ et ðequation 3Þ.

‘GLS-corrected (FGLS-corrected)’ denotes the GLS (FGLS) corrected dynamic regression estimator. Figures in the parenthesis represent

standard errors. ‘k’ denotes the maximum length of leads and lags. In FGLS corrected estimation, the serial correlation coefficient in the

error term is estimated before being applied to the Cochrane–Orcutt transformation, whereas it is assumed to be unity in GLS corrected

estimation which is analogous to regressing the first difference of variables without a constant term. Hausman test represents the

Hausman-type cointegration test as stipulated in Section 2.5. The test statistic is constructed as ðĜdgls � ~GdolsÞSðĜdgls � ~GdolsÞ
0
!dw2ð2Þ

where G ¼ ½b; g� and S ¼
varð ~bdglsÞ

covð ~bdgls ;~gdglsÞ
covð ~bdgls ;~gdglsÞ

varð~gdglsÞ

� �
. The critical values of w2ð2Þ are 4.61, 5.99 and 9.21 for 10%, 5%, and 1% significance

levels. The critical values of the ADF-based tests are �2:88 and �2:57 for 5% and 10% significance levels.
zrepresents that the null hypothesis can be rejected at 5%.
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with any test for cointegration. Therefore, it is assuring to know that all three estimators are similar
for large enough values of k and that the estimates are robust with respect to whether the regression error
is Ið0Þ or Ið1Þ.

We report the value of k chosen by the Bayesian information criterion (BIC) rule throughout our empirical
applications in order to give some guidance in interpreting results.12 A detailed analysis of how k should be
chosen is beyond the scope of this paper because this issue has not been settled in the literature of dynamic
cointegrating regressions.

Table 3 also reports the results when the ADF test is applied to the OLS residuals. The results show
evidence against the null hypothesis of structural spurious regressions and thereby corroborate the results
from the Hausman-type test under the opposite null hypothesis.

3.4. Output convergence across national economies

In this section, we apply the techniques to re-examine a long standing issue in macroeconomics, the
hypothesis of output convergence. For this application and the next, our main purpose is not to estimate
unknown structural parameters but to test the null hypothesis of cointegration with the Hausman-type test.
For this purpose, we do not need the strict exogeneity assumption under the alternative hypothesis of no
cointegration (or a spurious regression).

As a key proposition of the neoclassical growth model, the convergence hypothesis has been popular in
macroeconomics and has attracted considerable attention in the empirical field, particularly during the last
decade. Besides its important policy implications, the convergence hypothesis has been used as a criterion to
discern between the two main growth theories, exogenous growth theory and endogenous growth theory.
Despite this attention, it remains the subject of continuing debate mainly because the empirical evidence
supporting the hypothesis is mixed. Nevertheless, the established literature based on popular international
data sets such as the Summers–Heston (Summers and Heston, 2006) data set suggests as a stylized fact output
convergence among industrialized countries but not among developing countries and not between
industrialized and developing countries.

Given that a mean stationary stochastic process of output disparities between two economies is interpreted
as supportive evidence of stochastic convergence, unit-root or cointegration testing procedures are often used
by empirical researchers to evaluate the convergence hypothesis. In this vein, our techniques proposed here fit
in the study of output convergence. We consider four developing countries (Columbia, Ecuador, Egypt, and
Pakistan) along with four industrial countries (Denmark, New Zealand, South Africa, Switzerland). The raw
data are extracted from the Penn World Tables of Summers and Heston (2006) and consist of annual real GDP
per capita (RGDPCH) over the period of 1951–2003. The following two regression equations are considered
with regard to the cointegration relation:

yD
t ¼ aþ byI

t þ et, ð26Þ

yI
t ¼ aþ byI

t þ et, ð27Þ

where yD
t and yI

t denote log real GDP per capita for developing and industrial countries, respectively.
Table 4 presents the results which exhibit a large variation in estimated coefficients. Recall that our interest

in this application lies in the cointegration test based on the Hausman-type test. As can be seen from Table 4,
irrespective of country combinations, the null hypothesis of cointegration can be rejected when developing
countries are regressed onto industrial countries, indicating that there is little evidence of output convergence
between developing countries and industrial countries. The picture changes dramatically when industrial
countries are regressed onto industrial countries as in (27). Table 4 also reports that the Hausman-type test
fails to reject the null of cointegration in all cases considered. Our finding is therefore consistent with the
notion of convergence clubs which is taken as a stylized fact in the growth literature (e.g. Durlauf and Quah,
1999; Easterly, 2001).
12In fact, we are not sure whether the BIC is the right method. Given the sensitivity of estimation results, we report the results from

various k’s in the money demand application. In the following two applications for the PPP and output convergence, we just report the

results based on BIC mainly because the results are not very sensitive to k around the BIC choice.
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Table 4

Application to output convergence

Regressand Regressor k DOLS GLS-corrected FGLS-corrected Hausman test

Regression 1 COL DEN [1] 0.815 (0.168) 0.569 (0.088) 0.767 (0.127) 5.277z

NZL [0] 1.267 (0.337) 0.212 (0.086) 1.254 (0.049) 43.111z

SWI [0] 1.032 (0.225) 0.394 (0.077) 1.035 (0.026) 17.665z

ZAF [0] 1.336 (0.383) 0.368 (0.125) 1.337 (0.051) 30.998z

ECU DEN [0] 0.789 (0.341) 0.394 (0.164) 0.819 (0.003) 3.608z

NZL [0] 1.238 (0.711) 0.262 (0.159) 1.240 (0.052) 3.082y

SWI [0] 1.027 (0.430) 0.358 (0.162) 1.050 (0.030) 7.086z

ZAF [0] 1.381 (0.461) 0.321 (0.237) 1.416 (0.064) 8.203z

EGT DEN [0] 1.144 (0.215) 0.664 (0.150) 1.120 (0.042) 5.148z

NZL [4] 2.277 (0.354) 1.351 (0.347) 2.504 (0.234) 9.570z

SWI [2] 1.554 (0.725) 0.943 (0.271) 1.038 (0.642) 5.867z

ZAF [0] 1.790 (0.685) 0.505 (0.236) 1.753 (0.115) 10.107z

PAK DEN [0] 1.138 (0.181) 0.397 (0.132) 1.130 (0.049) 5.904z

NZL [0] 1.744 (0.409) 0.012 (0.135) 1.702 (0.115) 41.209z

SWI [2] 1.532 (0.304) 0.890 (0.207) 2.062 (0.235) 4.048z

ZAF [0] 1.813 (0.483) 0.578 (0.182) 1.802 (0.127) 15.634z

Regression 2 DEN NZL [4] 1.665 (0.042) 1.569 (0.201) 1.656 (0.041) 0.149

SWI [4] 1.303 (0.324) 1.353 (0.140) 1.285 (0.253) 0.011

ZAF [2] 1.683 (0.283) 1.235 (0.238) 1.599 (0.227) 2.104

NZL DEN [0] 0.629 (0.033) 0.496 (0.133) 0.635 (0.028) 0.396

SWI [0] 0.785 (0.088) 0.455 (0.133) 0.794 (0.019) 0.813

ZAF [2] 1.051 (0.158) 0.880 (0.244) 1.032 (0.146) 0.122

SWI DEN [1] 0.749 (0.048) 0.774 (0.137) 0.670 (0.045) 0.048

NZL [2] 1.215 (0.098) 0.813 (0.238) 1.111 (0.093) 1.779

ZAF [0] 1.273 (0.130) 0.690 (0.175) 1.289 (0.018) 0.727

ZAF DEN [1] 0.543 (0.075) 0.524 (0.107) 0.482 (0.068) 0.078

NZL [2] 0.870 (0.129) 0.667 (0.143) 0.706 (0.119) 0.822

SWI [1] 0.735 (0.106) 0.606 (0.114) 0.647 (0.114) 0.289

Note: See the notes in Table 2. Annual data covering 1951–2003 are used for four developing countries (COL: Columbia; ECU: Ecuador;

EGT: Egypt; PAK: Pakistan) and four industrial countries (DEN: Denmark; NZL: New Zealand; SWI: Switzerland; ZAF: South Africa).

k denotes the length of lead and lag terms for DOLS and DGLS chosen by the BIC rule.

regression 1: lnðyDEV Þ ¼ aþ b lnðyINDÞ þ e,

regression 2: lnðyINDÞ ¼ aþ b lnðyINDÞ þ e.
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3.5. PPP for traded and non-traded goods

As a major building block for many models of exchange rate determination, PPP has been one of the most
heavily studied subjects in international macroeconomics. Despite extensive research, the empirical evidence
on PPP remains inconclusive, largely due to the econometric challenges involved in determining its validity. As
is generally agreed, most real exchange rates show very slow convergence which makes estimating long-run
relationships difficult with existing statistical tools. The literature suggests a number of potential explanations
for the very slow adjustment of relative prices: volatility of the nominal exchange-rate, market frictions such as
trade barriers and transportation costs, imperfect competition in product markets, and the presence of non-
traded goods in the price basket. According to the commodity-arbitrage view of PPP, the law of one price
holds only for traded goods, and the departures from PPP are primarily attributed to the large weight placed
on non-traded goods in the CPI. This view has obtained support from many empirical studies based on
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Table 5

Application to PPP for traded and non-traded goods

Estimator Traded goods Non-traded goods

FRA ITA JPN U.K. U.S. FRA ITA JPN U.K. U.S.

DOLS 1.149 1.379 1.558 1.306 1.053 1.872 2.142 2.357 2.059 1.711

(0.312) (0.165) (0.326) (0.201) (0.198) (0.165) (0.241) (0.299) (0.278) (0.443)

BIC [0] [0] [0] [2] [0] [0] [0] [5] [1] [0]

GLS-corrected 0.833 1.114 1.086 1.030 0.919 0.375 0.448 0.372 0.351 0.159

(0.393) (0.381) (0.411) (0.365) (0.140) (0.178) (0.176) (0.198) (0.171) (0.080)

BIC [0] [0] [0] [0] [0] [0] [0] [0] [1] [0]

FGLS-corrected 1.229 1.456 1.717 1.248 0.766 1.932 2.005 2.214 1.671 0.392

(0.329) (0.149) (0.396) (0.162) (0.242) (0.152) (0.201) (0.313) (0.226) (0.216)

BIC [1] [1] [2] [1] [1] [2] [1] [5] [1] [3]

Hausman test [1] 0.022 0.209 0.002 0.002 0.006 5.097z 10.603z 9.597z 8.118z 17.424z

Note: Results are for f T
t ¼ aþ bpT

t þ et and f N
t ¼ aþ bpN

t þ et using Canada as a base country. Figures in parenthesis represent standard

errors. Entries inside square brackets represent the length of leads and lags chosen by BIC. Hausman test represents the Hausman-type

cointegration test as stipulated in Section 2.5. The test statistic is constructed as ðb̂dgls � ~bdolsÞ
2=Varð ~bdglsÞ!dw2ð1Þ. The critical values of

w2ð1Þ are 2.71, 3.84 and 6.63 for ten, five, and one percent significance level.
zrepresents that the null hypothesis of b̂dgls ¼ ~bdols can be rejected at 5% significance level.
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disaggregated price indices. They tend to provide ample evidence that prices for non-traded goods are much
more dispersed than for their traded counterparts and consequently non-traded goods exhibit far larger
deviations from PPP than traded goods. Given that general price indices involve a mix of both traded and
non-traded goods, highly persistent deviations of non-traded goods from PPP can lead to the lack of
conclusive evidence on the long run PPP relationship. As in the previous application, our main purpose for
this application is not to estimate unknown structural parameters but to test the null hypothesis of
cointegration with the Hausman-type test.

Let pt and pn
t denote the logarithms of the consumer price indices in the base country and foreign country,

respectively, and st be the logarithm of the price of the foreign country’s currency in terms of the base
country’s currency. Long-run PPP requires that a linear combination of these three variables be stationary. To
be more specific, long-run PPP is said to hold if f t ¼ st þ pn

t is cointegrated with pt such that et�Ið0Þ in

f T
t ¼ aþ bpT

t þ et,

f N
t ¼ aþ bpN

t þ et,

where the superscripts T and N denote the price levels of traded goods and non-traded goods, respectively.
Following the method of Stockman and Tesar (1995), Kim (2005) recently analyzed the real exchange rate

for total consumption using the general price deflator and the real exchange rate for traded and non-traded
goods using implicit deflators for non-service consumption and service consumption, respectively.13 We use
Kim’s data set to apply our techniques to the linear combination of sectorally decomposed variables. Table 5
presents the results using quarterly price and exchange rate data for six countries: Canada, France, Italy,
Japan, U.K., and U.S. for the period of 1974 Q1 through 1998 Q4. With the Canadian dollar used as
numeraire, Table 5 presents the estimates for b which should be close to unity according to long-run PPP. For
traded goods, estimates are above unity in most cases, but the variation across estimates does not seem
substantial, resulting in non-rejection of the null of cointegration in all cases considered. By sharp contrast, the
Hausman-type cointegration test rejects the null hypothesis in every country when the price for non-traded
goods is used. It is noteworthy that there exists a considerable difference between the GLS-corrected estimates
for b and their DOLS and FGLS counterparts which are far greater than unity. That is, supportive evidence of
13For details, see the Appendix for the description of the data. We thank J.B. Kim for sharing the data set.
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PPP is found for traded goods but not for non-traded goods, congruent with the general intuition as well as
the findings by other studies in the literature such as Kakkar and Ogaki (1999) and Kim (2005).14
4. Concluding remarks and future work

In this paper, we analyzed an approach to correcting spurious regressions involving unit-root nonstationary
variables by generalized least squares using asymptotic theory. This analysis leads to a new robust estimator
and a new test for dynamic regressions.

We considered two estimators to estimate structural parameters in spurious regressions: the GLS corrected
dynamic regression estimator suggested by Choi and Ogaki (2001) and the FGLS corrected dynamic
regression estimator. A GLS corrected dynamic regression estimator is a first differenced version of a dynamic
OLS regression estimator. Asymptotic theory shows that, under some regularity conditions, the endogeneity
correction of the dynamic regression works for the first differenced regressions for both cointegrating and
spurious regressions. This result is useful because it is not intuitively clear that the endogeneity correction
works in regressions with stationary first differenced variables even though it has been used for cointegrating
regressions.

For the purpose of the estimating structural parameters when the possibility of nonstationary measurement
error or nonstationary omitted variables cannot be ruled out, we recommend the FGLS corrected dynamic
regression estimators because they are robust. They are consistent both when the error is Ið0Þ and Ið1Þ. They
are asymptotically as efficient as dynamic OLS when the error is Ið0Þ and as efficient as GLS corrected
dynamic regression when the error is Ið1Þ. This feature may be especially attractive when the FGLS corrected
dynamic estimator is extended to a panel data setting. Past works on nonstationary time series panels assume
that all regressions in a panel are either cointegrating or spurious. However, when the number of cross-
sectional observations increases, it is very likely that we may observe an Ið0Þ=Ið1Þ mixed panel, i.e., the
regression errors are Ið0Þ in some regressions and Ið1Þ in others. One example is that we may reject PPP in
some countries while not rejecting it in others. To estimate the structural parameter in an Ið0Þ=Ið1Þ mixed
panel, we can first run an FGLS correction of each individual equation, so that the pooled panel estimator
always takes the fastest convergence rate. Hu (2005) studies this extension.

We also developed a Hausman-type cointegration test by comparing the dynamic OLS regression estimator
and the GLS corrected dynamic regression estimator. As noted in the introduction, this task is important not
merely because few tests for cointegration have been developed for dynamic OLS, but also because tests for
the null hypothesis of cointegration are useful in many applications. For this test, the spurious regression
obtained under the alternative hypothesis does not have to be structural.

We demonstrated our estimation and testing methods in three applications: (i) long-run money demand
in the U.S., (ii) output convergence among industrial and developing countries, and (iii) PPP for traded and
non-traded goods.

In the first application of estimating the money demand function, the results suggest that the endogeneity
correction of the dynamic regression works with a moderately large number of leads and lags for the GLS
corrected dynamic regression estimator. The GLS corrected dynamic regression estimates of the income
elasticity of money demand are very low with low orders of leads and lags, and then increase to more plausible
values as the order of leads and lags increases. Dynamic OLS estimates are close to the GLS corrected
dynamic regression estimates for a large enough order of leads and lags, and we find little evidence against
cointegration with the Hausman-type cointegration test. The FGLS corrected dynamic regression estimates
are very close to the GLS corrected dynamic regression estimates and the dynamic OLS estimates for
sufficiently large orders of leads and lags. Hence, in the first application, the FGLS corrected dynamic
regression estimator works well in the sense that it yields estimates that are close to those of the estimator that
seems to be correctly specified. This is confirmed by our simulation results in Section 2, indicating that the
14Engel (1999) finds little evidence for long-run PPP for traded goods with his variance decomposition method. However, it should be

noted that his method is designed to study variations of real exchange rates over relatively shorter periods. Park and Ogaki (2007) show

that this variance decomposition has an unexpected property when the variance of long-run differences is used and provides little

information about long-run variations of real exchange rates.
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small sample efficiency loss from using the FGLS corrected dynamic regression estimator is negligible for
reasonable sample sizes. Therefore, we recommend the robust FGLS corrected dynamic regression estimator
when the researcher is unsure about whether or not the regression error is Ið0Þ or Ið1Þ. This is important
because it is difficult to detect a small random walk component in the error term when the error is actually
Ið1Þ, and it is difficult to detect a small deviation from a unit-root when the error is actually Ið0Þ but the
dominant autoregressive root is very close to unity.

In the second application, we applied the Hausman-type cointegration test to the log real output of pairs of
countries to study output convergence across national economies. Our test results are consistent with the
stylized fact of convergence clubs in that we reject the null hypothesis of cointegration between developing and
developed countries while failing to reject the null hypothesis of cointegration between two developed
countries. Finally, we apply the Hausman-type cointegration test to study long-run PPP. Our test results
support the commodity-arbitrage view that long-run PPP holds for traded goods but not for non-traded
goods.

In future work, it will be important to study the choice of k, the number of leads and lags in the endogeneity
correction. Another aspect that will be useful in empirical work is the study of possible deterministic time
trends and seasonal effects in the model.
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Appendix A. Proof of results in Section 2.1

To show the distribution of the OLS estimator in regression (4) with r ¼ 1, define X ¼ ½x1; . . . ;xn�
0,

V ¼ ½v1; . . . ; vt�
0, and e ¼ ½e1; . . . ; en�

0. Also define Mv ¼ In � VðV0VÞ�1V and Mx ¼ In � XðX0XÞ�1X. Then the
OLS estimator for b and c can be written as

b̂n � b0

ĉn � c0

2
4

3
5 ¼ X0X X0V

V0X V0V

" #�1
X0e

V0e

" #

¼
ðX0MvXÞ

�1
�ðX0MvXÞ

�1X0VðV0VÞ�1

�ðV0VÞ�1V0XðX0MvXÞ
�1

ðV0MxVÞ
�1

" #
X0e

V0e

" #
.

We are mostly interested in the structural parameter b̂. Write its limit distribution as

b̂n � b0 ¼ ðX
0MvXÞ

�1X0e� ðX0MvXÞ
�1X0VðV0VÞ�1V0e

¼
X0MvX

n2

� ��1
X0e

n2

� �
�

1

n

X0MvX

n2

� ��1
X0V

n

� �
V0V

n

� ��1
V0e

n

� �

¼
X0MvX

n2

� ��1
X0e

n2

� �
þ opð1Þ

!d

Z 1

0

V ðrÞV ðrÞ0 dr

� ��1 Z 1

0

V ðrÞUðrÞdr

� �
� h1,

which gives Eq. (5).
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To show the limit distribution of the GLS corrected estimator in regression (6), write

ffiffiffi
n
p
ð~ydgls � y0Þ ¼ n�1

Xn

t¼1

DztDz0t

" #�1
n�1=2

Xn

t¼1

rDztut

" #
. (28)

For the denominator,

n�1
Xn

t¼1

DztDz0t ¼

n�1
Pn
t¼1

vtv
0
t n�1

Pn
t¼1

vtDv0t

n�1
Pn
t¼1

Dvtv
0
t n�1

Pn
t¼1

DvtDv0t

2
6664

3
7775!d

Sv G0v;Dv
Gv;Dv GDv;Dv

" #
� Q, (29)

where Sv is the variance matrix of fvtg and G is a matrix with elements computed from the autocovari-
ances of fvtg.

For the numerator, the assumptions on the innovation processes ensure that the CLT holds:

n�1=2
Xn

t¼1

Dztut ¼

n�1=2
Pn
t¼1

vtut

n�1=2
Pn
t¼1

Dvtut

2
6664

3
7775!dNð0;LÞ, (30)

where L is the long-run covariance matrix of the vector Dztut:

L ¼

P
j¼�1

h1Eðvtv
0
t�jutut�jÞ

P1
j¼�1

EðvtDv0t�jutut�jÞ

P1
j¼�1

EðDvtv
0
t�jutut�jÞ

P1
j¼�1

EðDvtDv0t�jutut�jÞ

2
6664

3
7775.

Hence, for the quantity defined in (28), we have the limit distribution given in (7):ffiffiffi
n
p
ð~ydgls � y0Þ!dNð0;OÞ,

where O ¼ Q�1LQ�1.
To derive the limit distribution for the FGLS estimator, we can first show that

nðr̂n � 1Þ ¼ Opð1Þ.

The proof is similar as that in Phillips and Hodgson (1994). Then for the sequence of ~yt, we can write it as

~yt ¼ y00 ~zt þ ut þ ð1� r̂nÞet�1.

Now, we can write

ŷfgls � y0 ¼
Xn

t¼1

~zt ~z
0
t

" #�1 Xn

t¼1

~zt½ut þ ð1� r̂nÞet�1�

" #
. (31)

Write the denominator as

Xn

t¼1

~zt ~z
0
t ¼

Pn
t¼1

~xt ~x
0
t

Pn
t¼1

~xt ~v
0
t

Pn
t¼1

~vt ~x
0
t

Pn
t¼1

~vt ~v
0
t

2
6664

3
7775.
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First,

Xn

t¼1

~xt ~x
0
t ¼

Xn

t¼1

ðxt � r̂nxt�1Þðxt � r̂nxt�1Þ
0

¼ ð1� r̂nÞ
2
Xn

t¼1

xt�1x
0
t�1 þ ð1� r̂nÞ

Xn

t¼1

½xt�1v
0
t þ vtx

0
t�1� þ

Xn

t¼1

vtv
0
t.

Hence,

n�1
Xn

t¼1

~xt ~x
0
t ¼ nð1� r̂nÞ

2 n�2
Xn

t¼1

xt�1x0t�1

 !

þ ð1� r̂nÞ n�1
Xn

t¼1

xt�1v0t þ n�1
Xn

t¼1

vtx
0
t�1

 !
þ n�1

Xn

t¼1

vtv
0
t

¼ n�1
Xn

t¼1

vtv
0
t þ opð1Þ!pSv.

Similarly, we can show that

n�1
X

~xt ~v
0
t ¼ n�1

Xn

t¼1

vtðvt � vt�1Þ
0
þ opð1Þ!pGv;Dv,

n�1
Xn

t¼1

~vt ~v
0
t ¼

1

n

Xn

t¼1

DvtDv0t þ opð1Þ!pGDv;Dv.

Hence,

n�1
Xn

t¼1

~zt ~z
0
t ¼ n�1

Xn

t¼1

DztDz0t þ opð1Þ!pQ. (32)

Next, consider the numerator in (31)

Xn

t¼1

~zt½ut þ ð1� r̂nÞet�1� ¼

Pn
t¼1

~xt½ut þ ð1� r̂nÞet�1�

Pn
t¼1

~vt½ut þ ð1� r̂nÞet�1�

2
6664

3
7775.

It is not hard to see that n�1
Pn

t¼1 ~zt½ut þ ð1� r̂nÞet�1�!p0. Intuitively, ~zt behaves asymptotically like the
differenced regressors ðv0t;Dv

0
tÞ
0, and u and v are uncorrelated by assumption. Our remaining task is to show

that

n�1=2
Xn

t¼1

~zt½ut þ ð1� r̂nÞet�1� ¼ n�1=2
Xn

t¼1

Dztut þ opð1Þ!dNð0;LÞ. (33)

This can be shown using arguments similar to those used in proving (32). Combining (33) with (32), we obtain
the limit distribution for ~ydgls as given in (11). &
Appendix B. Proof of results in Section 2.2

To show the limit distribution of the dynamic OLS estimator in the cointegration, define

Hn ¼
Imn 0

0 Imð2kþ1Þn
1=2

" #
. (34)
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We can write

Hnðŷdols � y0Þ ¼
nðb̂n � b0Þ

n1=2ðĉn � c0Þ

" #
¼

n�2
Pn
t¼1

xtx
0
t n�3=2

Pn
t¼1

xtv
0
t

n�3=2
Pn
t¼1

vtx
0
t n�1

Pn
t¼1

vtv
0
t

2
6664

3
7775
�1

n�1
Pn
t¼1

xtet

n�1=2
Pn
t¼1

vtet

2
6664

3
7775.

For the denominator,

n�2
Pn
t¼1

xtx
0
t n�3=2

Pn
t¼1

xtv
0
t

n�3=2
Pn
t¼1

vtx
0
t n�1

Pn
t¼1

vtv
0
t

2
6664

3
7775!d

R 1
0 V ðrÞV ðrÞ0 dr 0

0 Gv;v

" #
. (35)

Thus, the estimator of the Ið1Þ and Ið0Þ components are asymptotically independent. For the numerator,

n�1
Pn
t¼1

xtet

n�1=2
Pn
t¼1

vtet

2
6664

3
7775!d

R 1
0 V ðrÞdEðrÞ

Nð0;Lv;eÞ

" #
, (36)

where Lv;e is the long-run variance of vtet. Eq. (13) then follows.
To show the limit distribution for FGLS estimator in regression (16), write

n�1
Xn

t¼1

ê2t ¼ n�1
Xn

t¼1

e2t þ opð1Þ!ps2e ,

n�1
Xn

t¼1

êtêt�1 ¼ n�1
Xn

t¼1

etet�1 þ opð1Þ!pces
2
e ,

where ce is the first-order autocorrelation coefficient of fetg. Then the OLS estimator is

r̂n ¼
n�1
Pn

t¼1êtet�1

n�1
Pn

t¼1ê
2
t

!pce.

Conduct the Cochrane–Orcutt transformation (9) and estimate

~yt ¼ b0 ~xt þ c0 ~vt þ error.

For the sequence of ~yt, we can write it as

~yt ¼ b00 ~xt þ c00 ~vt þ ~et,

where ~et ¼ et � r̂net�1. Using the same weight matrix Hn, write

nð ~bn � b0Þ

n1=2ð~cn � c0Þ

" #
¼ H�1n

Pn
t¼1

~xt ~x
0
t

Pn
t¼1

~xt ~vt
0

Pn
t¼1

~vt ~x
0
t

Pn
t¼1

~vt ~vt
0

2
6664

3
7775H�1n

2
6664

3
7775
�1

n�1
Pn
t¼1

~xt ~et

n�1=2
Pn
t¼1

~vt ~et

2
6664

3
7775. (37)
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Define ~EðrÞ ¼ ð1� ceÞEðrÞ and ~V ðrÞ ¼ ð1� ceÞV ðrÞ. By Lemma 2.1 in Phillips and Ouliaris (1990),

n�1=2 ~x½nr�!d
~V ðrÞ and n�1=2

P½nr�
t¼1 ~et!d

~EðrÞ. Therefore we can show that

n�2
Xn

t¼1

~xt ~x
0
t!d

Z 1

0

~V ðrÞ ~V ðrÞ0 dr,

n�3=2
Xn

t¼1

~xt ~v
0
t!p0,

n�1
Xn

t¼1

~vt ~vt
0!pP; say.

Hence, the limit of the denominator in (37) is

H�1n

Xn

t¼1

ztz
0
t

" #
H�1n !d

ð1� ceÞ
2
R 1
0 V ðrÞV ðrÞ0 dr 0

0 P

" #
.

Next, consider the numerator in (37). In fact, we are only interested in the first element,

n�1
Xn

t¼1

~xt ~et!d

Z 1

0

~V ðrÞd ~EðrÞ ¼ ð1� ceÞ
2

Z 1

0

V ðrÞdEðrÞ.

Therefore, we obtain the limit distribution for ~bfgls,

nð ~bfgls � b0Þ!d

Z 1

0

~V ðrÞ ~V ðrÞ0 dr

� ��1 Z 1

0

~V ðrÞd ~EðrÞ

� �

¼

Z 1

0

V ðrÞV ðrÞ0 dr

� ��1 Z 1

0

V ðrÞdEðrÞ

� �
,

which is the same as the limit of b̂dols. &

Appendix C. Proof of results in Section 2.5

In the extended test where we allow endogeneity under the alternative, the regression can be written as

yt ¼ b0xt þ c0vt þ ðfst þ etÞ.

Define s ¼ ½fs1 þ e1; . . . ;fsn þ en�
0. Note that n�1=2s ¼ n�1=2eþ opð1Þ. Similar to Appendix A, the OLS

estimators for b under the alternative of a spurious regression can be written as

b̂n � b0 ¼ ðX
0MvXÞ

�1X0s� ðX0MvXÞ
�1X0VðV0VÞ�1V0s

¼
X0MvX

n2

� ��1
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n2

� �
�

1

n

X0MvX
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� ��1
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n
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n

� ��1
V0e
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� �
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¼
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� �
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!d

Z 1

0

V ðrÞV ðrÞ0 dr
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0

V ðrÞUðrÞdr

� �
.

Due to endogeneity, the estimator in the differenced regression is not consistent either. The estimators
ð ~b
0

dgls � b00; ~c
0
dgls � c00Þ

0
!pQ�1fðEðvtDstÞ

0;EðDvtDstÞ
0
Þ
0. Let b̄ denote the limit of ~bdgls, thenffiffiffi

n
p
ð ~bdgls � b̂dolsÞ ¼

ffiffiffi
n
p
ð ~bdgls � b̄Þ �

ffiffiffi
n
p
ðb̂dols � b̄Þ

¼ Opð1Þ þOpð
ffiffiffi
n
p
Þ

¼ Opð
ffiffiffi
n
p
Þ.
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Finally, in the differenced regression, the variance estimate still converges. Therefore, the Hausman-type
test statistic is of order n under the alternative of spurious regressions no matter whether exogeneity holds
or not. &

Appendix D. Data descriptions

In the application of the U.S. money demand, we use the same data set as in Stock and Watson (1993,
p. 817) for M1, GNP, price deflator, and 6-month commercial CP rates during 1947–1997. Readers are
referred to the original work for further details on data. In the second application, we retrieved the per capita
output series from the Penn World Tables: version 6.2 of Summers and Heston (2006). This consists of annual
data on real GDP per capita (RGDPCH) for four developing countries (Columbia, Ecuador, Egypt, and
Pakistan) along with four industrial countries (Denmark, New Zealand, South Africa, and Switzerland) over
the period of 1951–2003. In the PPP application we borrow the data set from Kim (2005) who constructed the
real exchange rate for total consumption using the general price deflator and the real exchange rate for traded
and non-traded goods using implicit deflators for non-service consumption and service consumption,
respectively. Data are quarterly observations spanning from 1974 Q1 to 1998 Q4. The exchange rates for
Canada, France, Italy, Japan, the United Kingdom, and the United States are taken from the International
Financial Statistics (IFS) CD-ROM, and bilateral real exchange rates of traded and non-traded
goods classified by type and total consumption deflators are from the Quarterly National Accounts and
Data Stream.

Appendix E. Guidelines on empirical application

Procedures for GLS- and FGLS-corrected estimations

Step 1: Choose a length (p) of lead and lag terms using popular lag selection rules such as AIC, BIC, or their
modified versions due to Ng and Perron (2001). Given that the lead and lag length selection issue has not been
settled in the dynamic OLS literature, we recommend to report results from different orders together with BIC
as a rough guideline. To correct for the endogeneity problem, the instrumental variable (IV) approach can also
be applied. The IV approach is appealing as it does not involve choosing the proper length of leads and lags,
but the downside is that it is not easy to find good instruments in practice.

yt ¼
Xp

k¼1

gkDxtþk þ bxt þ
Xp

k¼0

fkDxt�k þ et.

Step 2: (GLS-corrected estimation) Filter all variables in the above equation by taking the full difference

Dyt ¼
Xp�1
k¼1

gkD
2xtþk þ bDxt þ

Xp�1
k¼0

fkD
2xt�k þ Det,

Dyt ¼ y0Dzt þ Det.

Step 20: (FGLS-corrected estimation) Retrieve the OLS residuals such that êt ¼ yt �
Pp

k¼1ĝkDxtþkþ

b̂xt þ
Pp

k¼0f̂kDxt�k, and obtain r̂ from regressing êt onto êt�1. After n0 iterations r̂n can be obtained. The

variables are transformed such that ~yt ¼ yt � r̂nyt�1, ~xt ¼ xt � r̂nxt�1, and D ~xtþk ¼ Dxtþk � r̂nDxtþk�1.
Step 3: Apply OLS to estimate y ¼ fg1; . . . ; gp�1; b;f1; . . . ;fp�1g. The obtained estimates are the (F)GLS

corrected estimates of y.

The Hausman-type cointegration test

Step 1: Obtain the DOLS and GLS-corrected estimates for the parameters. We recommend to report the
results from different orders of lead and lag terms together with the one chosen by the BIC rule as a guideline.
When selecting lead and lag lengths through the BIC rule, it is recommended to choose the lengths for DOLS
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and DGLS separately. That is, ŷdols is obtained using the BIC lag length from DOLS regression equation while
~ydgls is obtained using the BIC lag length selected from DGLS regression equation as described above.

Step 2: Compute V̂b, a consistent estimate for the long run variance matrix of
ffiffiffi
n
p
ð~ydgls � yÞ using the

heteroskedasticity and autocorrelation consistent (HAC) estimator. In the empirical part of this paper we
adopted the long-run variance estimator from Andrews and Monahan (1992) with a quadratic spectral (QS)
kernel using prewhitening. Readers are also referred to the recent study by Sul et al. (2005) who propose a
recursive demeaning and recursive Cauchy estimation to reduce the small sample bias in prewhitening
coefficient estimates as well as a sample-size-dependent boundary condition rule that substantially enhances
power without compromising size.

Step 3: Construct the test statistic

hn ¼ nð ~bdgls � b̂dolsÞ
0V̂
�1

b ð
~bdgls � b̂dolsÞ!dw2ðmÞ.
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