
Econometrics Journal (2007), volume 10, pp. 82–112.

doi: 10.1111/j.1368-423X.2007.00200.x

How useful are tests for unit-root in distinguishing unit-root

processes from stationary but non-linear processes?

CHI-YOUNG CHOI† AND YOUNG-KYU MOH‡

†Department of Economics, University of Texas at Arlington, Arlington, TX 76019, USA
E-mail: cychoi@uta.edu

‡Department of Economics, Tulane University, New Orleans, LA 70118, USA
E-mail: ymoh@tulane.edu

Received: February 2005

Summary Standard unit-root tests are known to be biased towards the non-rejection of a unit-

root when they are applied to time series with non-linear dynamics. Unfortunately, not much is

known about the source of the power loss mainly because the analysis on nonstationarity and

nonlinearity to this date has been fragmentary. By means of a Monte Carlo study, the current

paper investigates the finite sample performance of five popular unit-root tests against a wide

class of non-linear dynamic models. In contrast to the common perception, our simulation

results suggest that what determines the power of unit-root tests is not the specific type of

nonlinearity in the alternative model, but how far the alternative model is away from the unit-

root process. The presence of nonlinearity seems immaterial to the performance of unit-root

tests if the non-linear process is far away from the unit-root process, which is in line with the fact

established in linear framework. Among the five tests under study, the ADF test outperforms

when the sample size is relatively small while the inf-t due to Park and Shintani (2005) is

more powerful for relatively large sample size regardless of the form of true models. We then

illustrate the empirical relevance of our analysis by reexamining the issue of mean reversion

in real interest rates, often referred to the Fisher hypothesis.

Key words: Unit-root tests, Non-linear dynamic models, Monte Carlo simulation, the Fisher
hypothesis.

1. INTRODUCTION

Stationary but non-linear processes have been often blamed for the poor performance of
conventional unit-root tests. Ever since pointed out by Perron (1989, 1990) that the standard
Dickey–Fuller (DF) tests underreject the unit-root null hypothesis when they are applied to a
stationary time series with structural shifts, the properties of conventional linear unit-root tests
have been assessed by numerous subsequent studies in the presence of diverse non-linear models
[e.g. Pippenger and Goering (1993) and Taylor (2001) for threshold models; Kim, Leybourne and
Newbold (2002) and Leybourne, Mills and Newbold (1998) for structural break models; Hall,
Psaradakis and Sola (1997) and Nelson, Piger and Zibot (2001) for Markov-switching models;
among many others]. In general, their evaluations are not encouraging for the tests which reveal
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poor discriminatory power against non-linear alternatives that are beyond the conventional linear
ARMA framework. Given that earlier unit-root tests were constructed under the maintained
assumption of linear and symmetric adjustment, a departure from linearity through curvature
or kinkedness could lead the tests to misinterpret it as permanent stochastic disturbances. In
response, more recent studies have developed testing procedures that are designed to accommodate
specific non-linear dynamics against unit-root process and they often reversed the empirical
conclusions on nonstationarity established by the standard DF-type tests. For all the contributions
and advancement in the literature, the analysis on nonstationarity and nonlinearity thus far has
been fragmentary in the sense that extant studies have predominantly focused on the comparison
with the standard DF-type tests only under a specific class of parametric non-linear models. The
current literature consequently leaves important issues intact such as the source of power loss and
the relative performance of tests under a wide variety of non-linear models.

The primary objective of this study is to address these issues via simulation experiments under
more comprehensive setup. Specifically, we evaluate the finite sample properties of popular tests
for unit-root against a broad class of non-linear dynamic models. Beware that our focus here is
not to address whether macroeconomic time series is best characterized by a linear or a non-linear
model but to investigate what mistakes we can make in drawing inference on stationarity of series
when we rely on usual testing procedures for unit-root. To this end, we consider five tests for
unit-root, the conventional ADF test together with four recent tests that are designed for diverse
non-linear processes under the alternative hypothesis: the M-TAR test proposed by Enders and
Granger (1998), the sign test given by So and Shin (2001), the test due to Kapetanios, Shin
and Snell (2003, hereafter KSS), and the inf-t test developed by Park and Shintani (2005). It is
important to note that the five tests have the common null hypothesis of unit-root but different
alternative hypotheses. The standard ADF test primarily concentrates on linear stationarity as
the alternative, while the M-TAR test has the Threshold Autoregressive (TAR) model, the KSS
test has the Smooth Transition Autoregressive (STAR) model, the sign test has general linear
and non-linear stationary AR models, and the inf-t test has general transitional AR models under
the alternatives. As such the selection of the tests were governed by the treatment for non-linear
dynamic models under the alternative.1

Extant studies on unit-root tests tend to highlight the usefulness of their tests by showing
the power improvement over the conventional DF-type tests under specific non-linear models
maintained in the alternative hypothesis. However, the outperformance could be a natural
consequence from the design of the tests and there is no guarantee that it will be witnessed
in other non-linear models as well. Moreover, since the true underlying model is usually unknown
in practice, it is imperative to evaluate the performance of tests under a wide class of non-
linear models. Given that the class of non-linear models includes virtually an infinite number of
models and specifications that are not linear, we focus on a subset of autoregressive non-linear
models which are popularly adopted in the literature of macroeconomics and international finance.
Table 1 reports the data generating processes considered in the current study that encompasses a

1Other popular tests that are not considered here fall into a subset of these tests in terms of parametric specification of
non-linear dynamic models under the alternative. For example, the testing procedures proposed by Bec, Guay and Guerre
(2002), Caner and Hansen (2001), Seo (2003) and Kapetanios and Shin (2003) test unit-root against the alternative of
multi-regime TAR model (two-regime for Caner and Hansen and Seo while three-regime for Bec et al. and Kapetanios
and Shin).
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Table 1. Summary of DGPs.

DGP no. Data Generating Process Model

1 yt = ρyt−1 + ε t AR(1)

2 yt = ρyt−1 + φy2
t−1 + et, et ∼i.i.d.(0, σ 2

1) Generalized AR(1)

3 yt = ρyt−1 + φyt−1 et−1 + et, et ∼N(0, σ 2
1) Bilinear (BL)

4 yt = (ρ |yt−1 |)/(|yt−1 | + c) + ε t Non-Linear AR

5 yt = x2
t + ε t, xt = ρxt−1 + ε t, ε t ∼N(0, 1) Squared relation (SR)

6 yt = exp(xt) + ε t, xt = ρxt−1 + ε t, ε t ∼N(0, 1) Exponential relation (ER)

7 yt = α + [1 + e−γ (yt−1−xt )]−1 + [1 + e−γ (yt−1+xt )]−1 + vt , Binary neural

xt = ρxt−1 + et, vt ∼N(0, σ 2
1), et ∼N(0, σ 2

2) Network (BNN)

8 yt = ρ 1 yt−1 + ρ 2 yt−1 I(yt−1 ≥ c) + ε t SETAR(1)

9 yt = yt−1 + ε t, if |yt−1 | ≤ k EQ-TAR

yt = ρyt−1 + ε t, if |yt−1 | > k

10 yt = k(1 − ρ) + ρyt−1 + ε t, if yt−1 > k Band-TAR

yt = yt−1 + ε t, if |yt−1 | ≤ k

yt = − k(1 − ρ) + ρyt−1 + ε t, if yt−1 < −k

11 yt = α + ρ 1 yt−1 + θ · (β + ρ 2 yt−1) + ε t, ESTAR

where θ = 1 − e−γ (yt−1−c)2

12 yt = α + ρ 1 yt−1 + θ · (β + ρ 2 yt−1) + ε t, LSTAR

where θ = [1 + e−γ (yt−1−c)]−1

13 yt = ρ t yt−1 + et, et ∼i.i.d.(0, 0.4) Markov-switching (MS) in

ρ t = ρ 1 St + ρ 2(1 − St) AR coefficients

14 yt = α1 + ρyt−1 + ε t, if t ≤ λT where 0 < λ < 1 Structural change (SC)

yt = α2 + ρyt−1 + ε t, if t > λT in level

15 yt = α1 + ρyt−1 + ε t, if t ≤ λ1 T where 0 < λi < 1 Multiple SCs

yt = α2 + ρyt−1 + ε t, if λ1 T < t ≤ λ2 T

yt = α3 + ρyt−1 + ε t, if λ2 T < t ≤ T

16 yt = α + ρyt−1 + σ 1 ε t, if t ≤ λT where 0 < λ < 1 SC in innovation

yt = α + ρyt−1 + σ 2 ε t, if t > λT

17 yt = α + yt−1 + ε t Unit-root process

18 yt = yt−1 + σ tε t, σ t = σ 1St + σ 2(1 − St) Regime switching

with unit-root

Note: I(s) denotes an indicator function which takes on the value of 1 if the argument is true and 0 otherwise.
Parameter values in simulations are set to k = 3, φ = −0.1, γ = 100, α = α1 = 0, α2 = −0.5, α3 = 1.5, σ 1 =
0.01, σ 2 = 0.05, ε t ∼ N(0, 1), P11 = Prob(St = 1|St−1 = 1) = 0, 95, P22 = Prob(St = 2|St−1 = 2) = 0, 9 where
St is a discrete, unobserved state variable that takes on the value of 1 or 2 in the regime switching models of DGPs 13 and 18.

family of well-known non-linear dynamic models such as bilinear (BL), generalized AR (GAR),
non-linear AR (NAR), TAR, STAR, Markov-switching and structural break models. It should
be noted that these non-linear time series models are based on mixtures of local autoregressive
models in which the persistence of process is influenced by the autoregressive parameter (hereafter
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‘associated’ AR parameter). In our simulation we consider two different values for the associated
autoregressive parameter (ρ =ρ1 = 0.5 and 0.9) which are set to be identical across models in order
to examine the impact of the associated AR parameters on test performances. Another notable
feature of our simulation study is to probe the potential impact of nonlinearity on the performance
of tests. This is carried out by looking at the response of test performance to the different
values of parameters which are believed to be relevant for non-linear configurations such as
convexity, curvature, or kinkedness. Take DGP 8 (SETAR model) and DGP 13 (Markov-switching
model), for example, the parameters are pertaining to the kinkedness in SETAR or the transition
probabilities in the case of the Markov-switching model. By so doing, we attempt to throw
additional light on the source of power loss of unit-root tests in the presence of non-linear dynamic
processes.

Our simulation results reveal several interesting points. First, the performance of unit-root
tests is more affected by the magnitude of associated AR parameters than by nonlinearity per
se. All the tests display decent discriminatory power irrespective of model specifications if the
associated AR parameter is mild indicating that the non-linear model is rather far away from
the unit-root, whereas the power drops sharply when the associated AR parameter increases.
Nonlinearity seems playing a part in the power loss only when the associated AR parameter is
close to unity. Second, the power loss is a finite sample problem as in the case of linear models.
The power loss is most serious when the sample size is relatively small while it improves with the
sample size in the vast majority of non-linear models. Third, among the tests under comparison,
the ADF test and the inf-t test stand out. In many non-linear models considered, the standard ADF
test outperforms the other tests under comparison particularly when the sample size is relatively
small. The inf-t test is most powerful for large sample sizes as its power reaches unity regardless
of the types of model. Fourth, in contrast to our prior beliefs, all the unit-root tests have certain
discriminatory power against the models beyond the ones stipulated in the alternative hypothesis.
For example, the ADF test has a satisfactory power property for various non-linear models, and
the M-TAR test frequently rejects the false null of unit-root even when the true underlying model
follows other non-linear process than TAR-type models. In this context, it will be misleading
if not dangerous to interpret rejection of the unit-root null as compelling evidence of the non-
linear model under the alternatives because the rejection can be driven by a myriad of other
models.

On the empirical plane of this paper, we illustrate the practical relevance of our analysis by
investigating the mean reversion of real interest rates, or the Fisher hypothesis, which has been
a popular subject of research in macroeconomics and finance. Despite extensive research, the
empirical evidence on the hypothesis remains inconclusive largely due to econometric challenges
involved in identifying stationarity of time series. By implementing the five unit-root tests to
the real interest rates of 12 OECD countries, we find supportive evidence of non-linear but
stationary behavior of the postwar real interest rates. Specifically, our analysis points toward
possible structural changes in the variables, which has been challenging to detect by the standard
unit-root tests.

The remainder of this paper is structured as follows. In the following section, we review
the five univariate tests employed in the current study. In Section 3, we present the simulation
results on the finite sample performance of the tests. Section 4 discusses the potential impact
of nonlinearity on the test performance. Section 5 demonstrates the empirical relevance of our
analysis and Section 6 concludes.
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2. UNIVARIATE TESTS

This section briefly outlines the five univariate tests employed in our analysis. For details on these
test procedures, the reader is referred to their original work. Throughout the paper, we focus on
the regression with no time trend which is more compatible with many empirical topics of interest
such as the PPP hypothesis or the growth convergence.

2.1. The ADF test

The ADF test is formulated by the following regression equation:

�yt = α + ρyt−1 +
k∑

j=1

φ j�yt− j + εt , t = 1, 2, . . . , T , (1)

where ε t is a white noise error term. Under the null hypothesis of unit-root (H0 : ρ = 0) against
the alternative of stationarity (HA : ρ < 0), the test statistic has a non-normal and non-standard
limiting distribution which is tabulated by Fuller (1976). As stressed in many studies, the choice
of lag length for k in equation (1) has a large effect on the test performance such that too few lags
adversely affect the size of tests while too many lags can reduce power. In the current paper, we
follow Ng and Perron (1995) to adopt the sequential t-test method with the maximum lag length
set as integer[8(T/100)1/4].2

2.2. The M-TAR test

Enders and Granger (1998) generalize the DF test to consider the null hypothesis of a unit-root
against the alternative of the momentum-threshold autoregressive (M-TAR) model which allows
a variable to display more momentum in one direction than the other that can be parametrized as

�yt = Itρ1[yt−d − τ ] + (1 − Itρ2[yt−d − τ ]) + εt (2)

where It is the indicator function such that

It =
{

1 if �yt−d > τ

0 if �yt−d ≤ τ
(3)

and τ denotes the value of the threshold and d represents the delay parameter. They set d = 1
so that the threshold depends on the previous period’s change in y. The value of threshold τ is
unknown and hence needs to be estimated along with ρ1 and ρ2. Using the estimated value of τ ,
the F-statistic (�μ) is constructed under the null hypothesis of unit-root (HA : ρ1 = ρ2 = 0). Since
the distribution of the test statistics is nonstandard due to the presence of nuisance parameters,
we use the critical values reported in Enders (2001).

2We obtain similar results from using Ng and Perron’s (2001) modified information criterion (MIC) and with another
maximum lag length rule of integer[12(T/100)1/4].
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2.3. The sign test

So and Shin (2001) develop a nonparametric sign test for the unit-root null against the alternative
of general linear and non-linear stationary AR process. Let {yt} be a monotone transformation of
a possibly non-linear AR process {xt},

xt = ρ(xt−1, . . . , xt−k) + ut , t = 1, 2, . . . , T ,

where ρ (xt−1, . . . , xt−k) is an unknown regression function of interest and {ut} is a sequence of
conditional zero median errors. The test statistic is then constructed as

ST (1) =
T∑

t=1

sign(yt − yt−1)sign(yt−1 − m̂t−1), (4)

where m̂t−1 denotes the median of {yi}t−1
i=0. The unit-root null hypothesis (H0 : xt = xt−1 + ut)

is rejected if ST (1) ≤ 2BT (α) − T where BT (α) denotes the lower α th quantile of the binomial
distribution B(T , 1/2). Using Monte Carlo experiments, So and Shin show that the sign test has
stable size and locally better power than the parametric DF test as well as other nonparametric
tests.

2.4. The KSS test

Kapetanios et al. (2003) propose a testing procedure under the unit-root null against the alternative
of a STAR model. In an ESTAR model

�yt = γ yt−1

[
1 − exp

( − θ y2
t−1

)] + εt ,

testing unit-root against non-linear stationarity is equivalent to testing H0 : θ = 0 against HA : θ

> 0. Since θ is not directly identifiable under the null, KSS use the following auxiliary regression
derived from a first-order Taylor expansion,

�yt = δy3
t−1 + error. (5)

Under the null (δ = 0), a t-type test statistic has a limiting distribution of functionals of the
standard Brownian motion. Asymptotic critical values of test statistics are tabulated by KSS.

2.5. The Inf-t test

Park and Shintani (2005) develop a unit-root test against general transitional AR models that
embrace a wide range of AR models with threshold, discrete and smooth transition dynamics.
Consider an autoregressive model,

�yt = λ(θ )yt−1π (yt−d , θ ) +
p∑

i=1

αi�yt−i + εt , (6)

where yt−d is the transition variable with delay lag d ≥ 1, θ is an m-dimensional nuisance parameter
which can be identified only under the alternative hypothesis of stationarity and π denotes a real-
valued transition function on R × R

m . Since the regression model in (6) can represent a broad
class of non-linear partial adjustment AR models with relevant choice of the transition functions,
the test is claimed to be useful in identifying unit-root in diverse transitional AR models.
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Testing the unit-root null hypothesis is equivalent to testing H0 : λ = 0 against H1 : λ < 0,
which involves estimating λ in (6) using least squares for each possible value of the transition
parameter θ ∈ �n to obtain the following t-ratio

Tn(θ ) = λ̂n(θ )

s(λ̂n(θ ))
(7)

where s(λ̂n(θ )) is the standard error of the estimate λ̂n(θ ). The inf-t test is then defined as

Tn = inf
θ∈�n

Tn(θ ),

which is the infinum of t-ratios in (7) taken over all possible values of θ ∈ �n, where �n is a
random sequence of parameter spaces given for each n as functions of the sample (y1, . . . , yn).
The limit distribution of inf-t statistic is free from any nuisance parameters and depends only
on the transition function and the limit parameter space. Throughout the paper, we stick to the
transition function for ESTAR model to account for the unknown underlying model in practice.

3. FINITE SAMPLE PERFORMANCE

Table 1 summarizes 18 models of linear and non-linear dynamics that we adopt for our simulation
experiments. They encompass simple extensions of the conventional AR model (DGPs 1 through
7), the endogenous and exogenous regime switching models (DGPs 8 through 13) as well as the
models with structural shifts (DGPs 14 through 16). Note that DGPs 1 through 16 are stationary
models to investigate the power performance of unit-root tests, whereas DGPs 17 and 18 are unit-
root processes for the size properties. Note that equilibrium errors in these models are stationary but
with different short-term dynamics. In fact, DGPs 14–16 violate the usual definition of stationarity
as the distribution is not same through time, but they are classified as stationary here because they
would be rejected with probability one by a standard unit root test when the sample size is
large enough as shown by Perron (1990, p. 156). These models include many interesting non-
linear dynamic models which are popularly employed by a multitude of studies [e.g. Hamilton
(1989), Garcia and Perron (1996), Michael, Nobay and Peel (1997), Rothman (1998), and Sarno,
Taylor and Chowdhury (2004), amongst many others] to characterize the dynamic behaviour of
macroeconomic variables such as real output, industrial production, unemployment rates, interest
rate and real exchange rates. Figure 1 plots the simulated sample series from each DGP for T =
100.

We consider the sample sizes of T ∈ {50, 100, 200, 500} that are likely to be encountered in
empirical analysis. Each simulation run is carried out with 5,000 replications. At each replication
T + 500 random numbers are generated, of which the first 500 observations are discarded to
minimize the influence of initial condition.3 Pseudo-random numbers are generated using the
GAUSS (version 6.0) RNDNS and RNDUS procedures. One noteworthy feature in our simulation
design is that the values for the associated autoregressive parameter (ρ andρ1) are set to be identical
across DGPs 1 through 16. We consider two scenarios for ρ by setting it to 0.5 and 0.9, in order

3Müller and Elliott (2003) note that the performance of some unit-root tests depends on the initial conditions, but we find
that the tests considered here are not sensitive to the initial conditions. For DGPs 14–16, additional initial 500 observations
are generated for the first regime only.
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Figure 1. Simulated DGPs (T = 100) for ρ = 0.5 (solid line) and ρ = 0.9 (dashed line).

to explore the impact of the magnitude of associated AR parameter on the power performance of
unit-root tests. Unless specified otherwise, the other parameters are set to k = 3, φ = −0.1, γ =
100, α = α1 = 0, α2 = −0.5, α3 = 1.5, σ 1 = 0.01, σ 2 = 0.05, P11 = 0.95, P22 = 0.9 throughout
the experiments.4

Table 2 presents the rejection rates of the unit-root tests which represent the number of times
out of 5,000 simulation that the unit-root null hypothesis is rejected at the 10% nominal size.5

Recall that they are related to the power performance of tests for DGPs 1 through 16, while to the
size performance for DGPs 17 and 18. The results bear several important features of note. First,
the power performance is highly sensitive to the value of associated AR parameter (ρ) particularly
when the sample size is relatively small. When ρ = 0.5, all the testing procedures exhibit decent

4Pij denotes the probability that process switches from regime i to regime j such that P11 = Prob(St = 1 | St−1 = 1),
P22 = Prob(St = 2 | St−1 = 2) where St is a discrete, unobserved state variable that takes on the value of 1 or 2 in the
regime switching models of DGPs 13 and 18.

5While the table only reports the results for i.i.d. error term, a broadly similar story is told when the error terms are
serially correlated but with a slight power deterioration except for a large negative MA root in which the tests are known
to suffer from severe size distortions.
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finite sample performance in terms of power and size in the vast majority of non-linear models.
The power is above 0.9 even for the sample size of T = 50 and it gets consistently closer to unity
when the sample size increases to T ≥ 100. However, the picture changes dramatically when the
associated AR parameter (ρ) rises to 0.9 as the power drops sharply in small samples. It is important
to note that the power loss is a finite sample phenomenon because the power performance improves
with the sample size and approaches unity in most DGPs for the sufficiently large sample size,
say T = 500. Interestingly, this is in line with the stylized fact established in linear models that
unit-root tests have poor discriminatory power in finite samples against highly persistent linear
processes.

Second, unlike our original expectations, the unit-root tests have certain discriminatory power
for the models beyond the ones assumed in the alternative hypothesis. The ADF test has a
satisfactory power performance against unit-root process even if the true underlying models
are not linear. This is particularly true when ρ is modest or when ρ is high but T is large. For
example, the probability that the ADF test rejects the false null of unit-root for the stationary EQ-
TAR model with ρ = 0.5 is as high as 84% when the sample size is just T = 100. For the same
model, the power gets close to unity for T = 500 even when ρ is as high as 0.9. In this context it
is reasonable to posit that the general perception on the poor performance of the DF-type tests in
the presence of non-linear models is driven by high ρ and small T. Although striking, this result is
consistent with the findings by some previous studies. Balke and Fomby (1997), for instance, note
that standard unit-root tests designed for linear case are valid asymptotically for non-linear models
to the extent that error terms satisfy certain mixing conditions. Enders and Granger (1998) also
report the robustness of the DF-type test against TAR models satisfying geometric ergodicity. A
similar story is told from the other tests based on certain non-linear models under the alternative.
The M-TAR and inf-t tests exhibit decent power of distinguishing unit-root process from non-
linear stationary models other than TAR or transitional AR models stipulated in the alternatives.
Consequently one should exercise considerable care when interpreting rejection of the unit-root
null by these tests as a conclusive evidence of the specific models under the alternative because
the rejection can be caused by a plethora of other models.

Third, among the five tests under comparison the ADF test and the inf-t test stand out. The
ADF test dominates in the majority of DGPs when the sample size is relatively small, while the
inf-t test is more powerful when the sample size is large. The good performance of the inf-t test
is interesting in view of the fact that we set the transition function as ESTAR model throughout
the experiments. The M-TAR test displays acceptable power performance for moderate ρ but is
outperformed by the ADF-test for large ρ as echoed in Enders and Granger (1998). Moreover,
the M-TAR test appears to suffer from undersize problem as it rejects the unit-root null far less
frequently than it ought to. The sign test shows comparable but not dominant performance, while
the KSS turns out to be outperformed by the other tests except for several cases in EQ-TAR model.

Fourth, all the tests commonly exhibit significantly low power against DGP 9 (EQ-TAR
model), DGP 10 (Band-TAR model) and DGP 15 (Multiple structural break model) for relatively
small sizes regardless of the magnitude of ρ. While the power appears to improve with the sample
size (T) for DGPs 9 and 10, the poor discriminatory power sustains for DGP 15 even in relatively
large sample size when ρ is high although the power would approach unity asymptotically as
shown by Perron (1990). It is interesting to note that the sign test has certain discriminatory
power in DGP 15 for moderate sample size. Therefore, inference drawn from the sign test is
more reliable when the time series under study is suspected to have undergone several structural
changes in the form of infrequent changes in the mean. We will revisit this issue in our empirical
application in the upcoming section.

C© Royal Economic Society 2007



Usefulness of tests for unit-root 93

In sum, our simulation results suggest that what determines the power of unit-root tests is not
the specific type of non-linearity in the alternative model, but how far the alternative model is
away from the unit-root process. In contrast to the general perception that the standard unit-root
tests are subject to have poor discriminatory power when they are applied to time series with
non-linear dynamics, the discriminatory power of unit-root tests is reasonable in the vast majority
of non-linear models under consideration when the associated AR parameter is mild, whereas
it deteriorates sharply as the associated AR parameter is close to unity. However, this does not
necessarily nullify the impact of nonlinearity on the performance of unit-root tests. For example,
the power of all tests is consistently lower in some non-linear models such as DGPs 9, 10, 14 and
15 compared to DGP 1, their linear equivalent. Since the models take the same profile in terms of
associated AR parameters, one should expect similar power performance across them if the AR
parameters are solely responsible for the performance of unit-root tests. The lower power in those
models thereby may indicate some potential role of nonlinearity, which prompts the question of in
what situation nonlinearity matters to the performance of unit-root tests. This question is explored
in the following section.

4. THE IMPACT OF NONLINEARITY

In dynamic models, a departure from linearity possibly through convexity, curvature, or kinkedness
could alter the deviation from long run equilibrium and the extent of dynamics. In the case of
structural change model, for instance, structural shifts are known to generate an upward bias on
persistence measured by standard AR models that assume a stable mean. As noted by Perron
(1989), the power problem of unit-root tests gets exacerbated because the shift in mean induces
a bias of the autoregressive coefficient towards unity and thus makes it appear to be unit-root
process.6 As such, nonlinearity could be consequential to the performance of unit-root tests so
long as it manifests itself by affecting the finite sample distribution of test statistics through a
change in curvature or so. Despite its potential importance, however, not much is known about
the potential connection between nonlinearity and the performance of unit-root tests and much
less is known about the extent of the impact. In this section, we explore the potential impact of
nonlinearity on the performance of unit-root tests focusing on the several non-linear models where
the unit-root tests exhibited lower power than in the linear equivalent. Given that the power loss
is a finite sample phenomenon, we follow much of the literature to provide simulation evidence
rather than theoretical foundation.

4.1. Parameters relevant for nonlinearity

Though carefully designed, our experiment in the previous section is open to criticism as design-
specific because it is conducted by fixing the values of other parameters than AR parameters. As
often reported in the literature, however, performance of unit-root tests in non-linear dynamic

6Levin and Piger (2004) also report a persistence parameter for the United States GDP deflator of 0.92 over the
period 1984:Q1–2003:Q4 without accounting for possible shifts, but persistence drops to 0.36 once a structural break is
allowed for. Since these estimates of persistence are obtained from dynamic linear models which crucially depends on the
assumption of specific long run equilibrium level, exaggeration in the degree of persistence is resulted from the violation
of the assumption in the case of structural break models.

C© Royal Economic Society 2007



94 Chi-Young Choi and Young-Kyu Moh

models also hinges upon other parameters that were held constant in our earlier experiments.
Take DGPs 9 and 10 for example, Balke and Fomby (1997) report that not only the autoregressive
parameters but also the constants in the threshold autoregression contribute to the power of
standard tests. They also find that unit-root tests are more powerful against the Band-TAR model
than the EQ-TAR model in spite of the identical autoregressive parameters in both models, which
is in line with our results that the unit-root null is rejected less frequently in DGP 10 than in DGP
9. As such, since the evaluation of unit-root tests can vary with different values of parameters
other than AR parameter, it would be informative to assess the performance of tests in wider
parameter spaces.

In general, it is not straightforward to pin down the parameters dictating nonlinearity partly
because they are often intermingled with other parameters like AR parameters. In bilinear model
(DGP 3), for instance, φ is allegedly related to nonlinearity in the sense that the process degenerates
to linear model if φ = 0, but it is also a part of AR parameter. By contrast, in some models it is
relatively easier to identify. For example, in EQ- and Band-TAR models (DGPs 9 and 10) where
the AR parameter in the inner regime is unity while those in the outer regimes are less than unity,
nonlinearity can be manifested by the difference in slopes between two regimes, or (1 − ρ), which
is dubbed by Sarno et al. (2004) as the threshold effect.7 Likewise in SETAR model (DGP 8)
where the behaviour of process is governed by the joint behaviour of the linear AR models on the
two boundary threshold regimes, the difference between ρ1 and ρ2 reflects the kinkedness of the
boundary and hence the departure from linearity. Here, the degree of nonlinearity can be measured
by the ratio of the two AR parameters, ζ = ρ1

(ρ1+ρ2)
, so that higher ratio implies less kinkedness in

the sense that the ratio becomes unity when it is linear (ρ2 = 0). The ratio can be also applicable
to other transition models like STAR models (DGPs 11 and 12) and Markov-switching model
(DGP 13). In STAR models, however, there is another source of nonlinearity. It is the curvature of
transition function (θ ) which is jointly decided by the smoothness parameter (γ ) that determines
the speed with which the transition from one regime and to the other takes place, as well as the
threshold size (c). Given the value of γ , the threshold parameter (c) decides the distance between
regimes and hence positively involve the degree of nonlinearity. But the role of γ is not that
straightforward as it depends on the type of STAR model. ESTAR model collapses to a linear
model either when γ → 0 or γ → ∞, while it is the case for LSTAR only when γ → 0.8 In
Markov-switching model, nonlinearity also stems from the transition matrix of the Markov chain
which is governed by the transition probabilities, (P11, P22) where Pij denotes the probability that
the process switches from regime i to regime j.9

To investigate the impact of these parameters on the performance of unit-root tests, we conduct
another simulation experiment. If nonlinearity really matters, the performance of unit-root tests
should be responsive to the values of relevant parameters. Table 3 reports the power performance
of unit-root tests in four transition models where the degree of nonlinearity is measured by
ζ = ρ1

(ρ1+ρ2)
. We consider several sets of parameter values, (ρ1, ρ2) = {(0.3, 0.3), (0.4, 0.2), (0.4,

0.4), (0.6, 0.2), (0.5, 0.4), (0.6, 0.3), (0.8, 0.1)} such that the corresponding ratio (ζ ) is equal to

7In these TAR models, a tradeoff exists between the degree of nonlinearity and the magnitude of AR parameter in the
outer regimes so that an increase in persistence in the outer regimes lowers the degree of nonlinearity.

8When γ → ∞, LSTAR model nests a TAR model where the transition occurs abruptly rather than smoothly.
9As summarized by Yang (2000, p. 31–32), the process collapses to a single AR(1) process if (P11, P22)=(0,1) or (1,0),

while it becomes two AR(1) regimes that never interact with probability 1 when (P11, P22) = (1,1). If (P11, P22) = (0,0),
the behaviour of the Markov chain is periodic and switches regimes every period with probability 1.
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{1/2, 2/3, 1/2, 3/4, 5/9, 2/3, 8/9}. In all models considered, the power of unit-root tests is highly
sensitive to the associated AR parameters in particular ρ1, but not much to the nonlinearity ratio
(ζ ). For the last three sets of parameters which take the same values for (ρ1 + ρ2) but different
values for ρ1, the power of tests decreases with ρ1 while the departure from linearity in fact
gets smaller. This reinforces our prior finding that power performance hinges upon AR parameter
rather than kinkedness of slopes. We further investigate the performance of unit-root tests in
STAR models (DGPs 11 and 12) by looking at several choices of c and γ that impinge on the
curvature of transition function and hence nonlinearity. As presented in Table 4, the power changes
dramatically with ρ1 and ρ2 but little with c and γ when ρ1 and ρ2 are fixed. Interestingly, c and
γ exert bigger impact on the power when AR parameters are larger, implying that the impact of
nonlinearity depends on the magnitude of AR parameter. A similar story is told in Table 5 which
gives the results from Markov-switching models. The power performance hardly responds to the
different probabilities in the transition matrix, but substantially to the associated AR parameters.

Table 6 summarizes the results for EQ- and Band-TAR models in which the roots outside
of the band are chosen from the set of {0.1, 0.3, 0.5, 0.7, 0.9} so that the consequent threshold
effects are {0.9, 0.7, 0.5, 0.3, 0.1.} As can be seen from Table 6, the power of tests decreases with
the magnitude of outer roots but increases with the difference in slopes between the two regimes
that represents the departure from linearity. Our results therefore confirm the finding by earlier
studies [e.g. Balke and Fomby (1996) and Sarno et al. (2004)] that the power is affected more by
the variations in the outer root (ρ) than by the threshold effect (1 − ρ). In the Band-TAR model
(DGP 10), however, we find that the power of tests is inversely affected by the value of threshold
parameter (k), as previously reported by Pippenger and Goering (1993), Balke and Fomby (1997)
and Park and Shintani (2005). This is well expected because larger threshold parameter implies
broader zone for unit-root process, and hence unit-root behaviour is observed more often. It is
worth noting that the inf-t test dominates in terms of power performance regardless of the threshold
band except when ρ is large in small samples where it is marginally outperformed by the ADF
test.

In the models with structural break as presented in Table 7, inference on unit roots is highly
affected not just by AR parameters but by the size of mean shifts and the timing of break point
(e.g. Lee 2000). The ADF test tends to substantively underreject the unit-root null even when the
mean shift is relatively small, as reported by numerous authors. By contrast, the sign, M-TAR
and inf-t tests display reasonable power performance for mild AR parameter especially when the
sample size is large. However, their power performance deteriorates rapidly as the associated AR
parameter increases irrespective of sample size. A remarkable exception is the sign test which
retains decent power in large sample size even when the AR parameter is large. This suggests that
inference drawn from the sign test is more reliable when the time series under study is suspected
to have undergone several structural changes in the form of infrequent changes in the mean.

Overall, our results in this section suggest that nonlinearity may play only a supplementary
role in the power performance of unit-root tests while it is primarily influenced by the magnitude
of associated AR parameters. Major exceptions include Band-TAR models and structural break
models in which low power is observed even when the associated AR parameters are rather mild.

4.2. Nonlinearity and stationarity conditions

A process is said to be nonstationarity if it violates certain conditions for stationarity. In linear
autoregressive model, for example, the stationarity condition concerns that the roots of the
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autoregressive polynomial lie outside the unit circle in the complex plane. By analogy, a non-linear
process is subject to lead to the rejection of unit-root null provided that it satisfies stationarity
conditions.

In many non-linear models, the conditions that guarantee stationarity are not available with
the exceptions of several parametric non-linear models such as bilinear model, TAR model
and Markov-switching model.10 In Bilinear model and Markov-switching model, stationarity
conditions hinge on the associated AR parameters as well as the parameters pertaining to
nonlinearity. As a result, nonlinearity can exert certain influence on the performance of unit-
root tests when it leads to the violation of the conditions. Take a bilinear model (DGP 3) for
example, nonlinearity is approximated via the second-order Taylor expansion, and the necessary
condition for stationarity is shown by Granger and Andersen (1978) as ρ2 + φ2σ 2

e < 1 where
the process nests to linear if φ = 0. Also in Markov-switching model (DGP 13) where dynamics
change in accordance with a non-observed Markov chain, stationarity conditions depend on the
characteristic roots as well as the transition matrix of the Markov chain. As illustrated by Yang
(2000, p. 31–32), the condition for boundedness and stationarity in the case of Markov-switching
in AR coefficients is given as maxi=1,2{Pi1|ρ1|2 + Pi2|ρ2|2} where Pij denotes the transition
probability from regime i to j. In these cases, the parameters associated with nonlinearity can
affect the performance of unit-root tests even asymptotically through stationarity conditions.

In some other non-linear models, the stationarity condition is primarily governed by the
associated AR parameters. For instance, the sufficient condition for global stationarity in SETAR
model is known as the roots of the autoregression in the outer regime should be less than unity in
absolute value [e.g. Tong (1990), Granger and Teräsvirta (1993), Sarno et al. (2004), amongst many
others]. Similarly in TAR model with identical symmetric threshold autoregression, a sufficient
condition for stationarity is that the roots of the autoregression in the outer regimes are less than
unity in absolute value (e.g. Tjøstheim 1990).11 Since nonlinearity does play little role in the
stationarity condition in these models, the properties of unit-root tests will be hardly affected
by nonlinearity no matter whether we take into account the specific non-linear structure in the
construction of the tests in the previous sections.

5. EMPIRICAL APPLICATION

The time series property of real interest rates has been the subject of a substantial amount of
research in macroeconomics and finance owing to its important implication in the theoretical
models such as the consumption-based asset pricing and the Fisher hypothesis. Although
theoretical models in general predict the mean reversion of real interest rates, empirical evidence

10Refer to Chan et al. (1985, theorem 2.1 in p. 270), Liu and Susko (1992), Tjøstheim (1990), for TAR model, and Yang
(2000) for general conditions of the ergodic behaviour of bilinear model, TAR model, and Markov–switching model.
See also Carrasco (2002, p. 243–246) for the stationarity conditions of the structural change AR (SCA) model, Markov–
switching AR model and TAR model. Kristensen (2005) documents the conditions of geometrically ergodic (β-mixing)
for a general non-linear Markov model. As noted by Altissimo and Violante (2001, p. 465), they commonly rely on
Markov chain theory to verify the existence of a central set in the space of the time series towards which the stochastic
trajectories drift almost certainly.

11See also Chan and Tong (1985) for a set of sufficient conditions on the general threshold autoregression. The conditions
with regard to other parameters such as intercepts or threshold parameter are not available. Investigating this would be an
interesting avenue of research but is beyond the scope of this paper.
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has been rather mixed. A stream of research (e.g. Mishikin 1992; Evans and Lewis 1995; Crowder
and Hoffman 1996, amongst others) looked at the dynamic behavior of the real interest rate within a
cointegrated framework taking the nonstationarity of inflation and nominal interest as a maintained
hypothesis. Despite the wide acceptance in empirical research, it remains an open question whether
both inflation and nominal interest rate are integrated variables. In fact, some studies based
on panel data techniques [e.g. Wu and Zhang 1996; Wu and Chen 2001) have found evidence
against nonstationarity for nominal interest rates, which violates the prerequisite for applying
a cointegration technique. They attribute the earlier findings of unit-root for nominal interest
to an artefact of the low finite sample power of the standard univariate tests. Another criticism
against the cointegration approach is related to the poor performance of the conventional unit-
root test techniques when potential nonlinearities in the dynamics are overlooked. Indeed, more
recent studies (e.g. Garcia and Perron 1996; Bekdache 1999; Lai 2004) attempt to compromise
the empirical findings with the theoretical prediction on real interest rates by demonstrating
that the stochastic behaviour of real interest rate is better described by stationary but non-linear
characterizations. Given that the wedge between the empirical evidence and the theoretical models
rests in large part on the inference around nonlinearity and nonstationarity; the issue is highly
relevant to the main theme of this paper.

Table 8 reports the empirical results when the five unit-root test techniques discussed in the
previous sections are implemented to the real interest rates of 12 industrial countries: Australia,
Belgium, Canada, Denmark, France, Italy, the Netherlands, Norway, Switzerland, New Zealand,
the United Kingdom and the United States. The selection of countries was governed by the
requirement of having longest continuous data series. The data used are quarterly long-run
government bond yield (IFS line code 61..ZF) and CPI (IFS line code 64) based inflation rate
during 1957:1–2003:3 retrieved from the International Monetary Fund’s International Financial
Statistics (IFS). Here, we follow the common practice of using ex post real interest rates defined
by the difference between the nominal interest rate and realized inflation which is regarded as
proxies for the expected inflation rate.12

As can be seen from Table 8, the ADF test provides little evidence of mean reversion as it fails
to reject the unit-root null in most countries, which mirrors similar results found in the preceding
studies based on the conventional unit-root tests. However, this conclusion is reversed by the tests
designed to have power against the alternative of specific non-linear models. In the majority of
countries, the M-TAR, sign and inf-t tests provide strong evidence of mean reversion by soundly
rejecting the unit-root null even at the 5% significance level. Taken together, it might be fair to
interpret this seemingly contradictory result as convincing evidence of non-linear mean-reverting
behaviour of real interest rates except for Italy and the United States where all the tests reach an
agreement on the unit-root. The next step might be to ask in which non-linear process the real
interest rates follow. Unfortunately, the extant techniques are of little help in providing guidance
as to which non-linear form is most appropriate. However, comparison of the empirical results

12In the literature, it is widely agreed that distinction between ex post and ex ante real interest rate is immaterial to the
mean reversion of the real interest rate because the difference between the two is the inflation forecasting error which is
assumed to be stationary under rational expectations. As well documented in Sun and Phillips (2004), however, the use
of ex post series could substantially underestimate the true degree of persistence in the ex ante variables if the former
is viewed as noisy observations of the latter. Nevertheless, we stick to the ex post real interest rates in our study partly
because data for expected inflation are unavailable in many countries for the long time span under study and largely for
the purpose of comparison with earlier studies based on ex post series. Furthermore, the issue of adjusting for inflation
seems not been settled yet.

C© Royal Economic Society 2007



Usefulness of tests for unit-root 107

Table 8. Empirical results for quarterly real interests.

Unit-root tests Datings of

Country ADF MTAR Sign KSS inf-t structural breaks

AUS −1.97 8.59∗∗ −20.00∗∗ −2.75∗ −3.58∗∗ 70:2 [69:1–70:3]

90:3 [89:4–92:1]

BEL −7.37∗∗ 81.98∗∗ −29.00∗∗ −6.43∗∗ −9.19∗∗ None

CAN −1.45 6.25∗∗ −23.00∗∗ −1.33 −2.94∗ 66:4 [66:3–67:1]

91:1 [90:3–94:2]

DEN −1.44 11.98∗∗ −18.00∗∗ −1.47 −2.99∗ 69:2 [67:1–70:1]

83:3 [83:1–87:4]

90:3 [89:2–91:2]

FRA −1.63 6.43∗∗ −19.00∗∗ −1.91 −4.44∗∗ 91:3 [91:2–91:4]

ITA −1.59 3.28 −16.00 −2.79∗ −3.11 None

NET −2.05 32.71∗∗ −30.00∗∗ −1.83 −6.04∗∗ 68:3 [66:4–71:2]

84:3 [83:2–86:2]

NOR −1.32 14.88∗∗ −31.00∗∗ −1.08 −3.54∗∗ 69:3 [68:3–70:3]

79:3 [72:1–81:1]

91:1 [90:2–92:2]

NZL −2.66∗ 15.65∗∗ −26.00∗∗ −3.00∗∗ −5.15∗∗ 69:3 [65:2–69:4]

90:3 [90:1–92:2]

SWI −2.73∗ 6.55∗∗ −25.00∗∗ −4.73∗∗ −5.33∗∗ 64:4 [57:1–67:2]

93:1 [92:3–97:3]

U.K. −2.03 11.28∗∗ −29.00∗∗ −2.77∗ −3.91∗∗ 69:3 [67:1–70:1]

82:1 [81:3–87:1]

92:1 [91:1–93:1]

U.S. −1.55 3.75 −4.00 −2.62 −3.27 67:1 [66:4–67:1]

90:3 [89:3–95:1]

Note: ∗ and ∗∗ denote the cases where the null hypothesis can be rejected at the 10%, 5%, respectively, significance
level. Entries in the dating represent the occurrence of break points in year and quarter estimated by the sequential
procedure estimation method of Bai and Perron (1998, 2003). In brackets are the 95% confidence intervals for the end dates.

in Table 8 with our simulation results in Table 2 hints a promising candidate: multiple structural
break model (DGP 15) in which the M-TAR, sign and inf-t tests exhibit decent discriminatory
against unit-root while the ADF test does not. As shown in Table 7, in the sample size of T = 200
which is comparable to our empirical application, the rejection rate of the ADF test is very low
even for large sample size, whereas the rejection rates of the three tests are quite high when the
associated AR parameter is relatively mild. Our argument is reinforced by more recent studies on
real interest rate (e.g. Bai and Perron 1998, 2003; Caporale and Grier 2000; Garcia and Perron
1996; Rapach and Wohar 2005) that report evidence of structural breaks in the mean which has
been elusive for the standard tests to capture. For example, by applying the Bai and Perron’s
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(1998, 2003) structural break testing methodology to 13 industrialized countries during 1957–
1998, Rapach and Wohar (2005) find structural breaks in the mean for ex post tax-adjusted real
interest rates. Once we find the existence of breaks, we need to know their locations. Exploiting
the findings in Rapach and Wohar, we apply the Bai and Perron’s methodology to our data sets.13

Table 8 also presents the dates for the structural breaks in the real interest rates and their 95%
confidence intervals for the 12 countries. As in Rapach and Wohar, we witness that the breaks
for the real interest rates occur relatively close to one another in many countries. However, unlike
Rapach and Wohar, we fail to find any convincing evidence of commonality in the number of
structural breaks and occurring dates. In the number of breaks, for example, Belgium and Italy
exhibit no break, while three breaks are found in the real interest rates for Denmark, Norway and
the United Kingdom.

6. CONCLUDING REMARKS

Standard unit-root tests are known to be biased towards the non-rejection of a unit root when
they are applied to time series with non-linear dynamics. Although it is widely perceived that
nonlinearity may constitute a significant source of loss of power in standard unit-root tests, not
much is known about the source of power loss mainly because the analysis on nonstationarity
and nonlinearity to this date has been fragmentary. By means of a Monte Carlo study, the current
paper attempts to provide an advance over the existing literature by investigating the finite sample
performance of unit-root tests against a wide class of stationary but non-linear processes. For this
purpose, we apply five popular tests under the same unit-root null but with different stationary
models in the alternatives to a broad family of non-linear dynamic processes. In contrast to the
common perception, our simulation results suggest that what determines the power of unit-root
tests is not the specific type of nonlinearity in the alternative model, but how far the alternative
model is away from the unit-root process. The presence of nonlinearity does not necessarily
result in power loss unless the associated AR parameter is close to unity. Moreover, the unit-
root tests under study have decent discriminatory power against the models beyond the ones
assumed in the alternative hypothesis. The ADF test has a satisfactory power property for various
non-linear models and the M-TAR and inf-t tests have reasonable power in identifying unit-root
process against other non-linear models than TAR or transitional AR models. Consequently, it is
misleading if not dangerous to interpret the rejection of the unit-root null as a compelling evidence
of the specific models under the alternative hypothesis. Among the five tests under study, the ADF
test outperforms when the sample size is relatively small while the inf-t due to Park and Shintani
is more powerful for large sample size irrespective of the form of models. We also illustrate
the empirical relevance of our simulation study by reevaluating the mean reversion issue of real
interest rates, often referred to as Fisher hypothesis. Our analysis suggests that the inconclusive
evidence on the mean reversion was largely driven by the infrequent structural breaks in the mean

13Other than the data span, our data set is identical to the one used by Rapach and Wohar except that Ireland is excluded
in our data set due to its discontinuity after 1998. As discussed in the text, we also take a different approach to deriving
nominal interest and inflation rates. See Appendix for a brief description of the Bai and Perron’s methodology. Readers
can refer their original work for further details regarding the method. We thank Jushan Bai and Pierre Perron for the use
of their publicly available Gauss code available at http://people.bu.edu/perron/.
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of real interest rates which the standard testing techniques do not effectively distinguish from
nonstationarity.

In the literature, it is often claimed that a unit-root test needs to be applied before establishing
whether the model is linear or not. However, our results indicate that this approach will be of
reduced merit when the associated AR parameters take large values which makes challenging for
the extant technical devices to detect stationarity of processes with high AR parameter regardless
of linearity.
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APPENDIX: THE BAI–PERRON METHODOLOGY

In estimating unknown multiple structural breaks in dynamic linear regression models, Bai and Perron’s

(1998, 2003) method largely consists of two stages. The first stage pertains to estimating the number of

unknown structural breaks. To this end, BP suggests several testing procedures: double maximum tests and a

test for l versus l + 1 breaks. The former tests are constructed under the null hypothesis of no structural break

against the alternative of an unknown number of breaks given some upper bound, while the latter, labelled

supFT (l + 1|l), involves testing the null of l breaks against the alternative of l + 1 breaks. BP recommends to

apply double maximum tests first to see whether at least one break exists. If the tests suggest the presence of

at least one break, then the number of breaks is decided based on a sequential examination of the supFT (l +
1|l) statistics. According to BP, this approach leads to the best results and hence recommended for empirical

applications.

Once the number of break is identified, the second stage of BP method is related to estimating breakpoints

as well as coefficients of interest using the least squares principle. To illustrate, consider a linear regression

model with m − 1 breaks (and thus m regimes which are identified in the first stage),

yt = δ( j) + εt , t = Tj−1 + 1, Tj−1 + 2 . . . , Tj ,

for j = 1, . . . , m where δ(j) is the mean level of the series in the jth regime. To estimate breakpoints, we

consider every possible m-partition of T , (T 1, . . . , Tm). For each m-partition, the regression coefficients (δ(j)s)
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are estimated by minimizing

m∑
j=1

Tj∑
t=Tj−1+1

[
yt − δ( j)

]2
.

Let ST (T 1, . . . , Tm) be the sum of squared residuals such that ST (T1, . . . , Tm) = ∑m
j=1

∑Tj
t=Tj−1+1[yt − δ̂( j)]2.

Then the breakpoints (T̂1, . . . , T̂m) are estimated by choosing the m-partition that has minimal ST (T 1, . . . ,

Tm) such that

(T̂1, . . . , T̂m) = argminT1,...,Tm ST (T1, . . . , Tm).

With these breakpoint estimates, the associated regression parameters are estimated subsequently. BP develop

an efficient algorithm for the minimization problem based on the principle of dynamic programming.
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