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This online appendix is organized as follows. Section A.1 describes the modeling setup and outlines

the main assumptions. Section A.2 discusses the consistency of the most parsimonious, DL, ADL,

ARDL, and VARDL approaches. Section A.3 presents the Monte Carlo experiments using a design

calibrated to a multicountry output growth VAR. Section A.4 presents the Monte Carlo experiments

using a design calibrated to a U.S. macro dataset. Section A.4 presents all the Monte Carlo

experiment results re-computed using the AIC in lieu of the BIC rule.

A.1 Modeling setup

The following assumptions are postulated to hold for the discussions below.

ASSUMPTION 1 |λ1 (Φ)| ≤ ρ < 1, where λ1 (Φ) is the largest eigenvalue of Φ.

ASSUMPTION 2 Let ut = Rξt, where the elements of R are bounded and ξt ∼ IID (0k×k, Ik).

The first element of ξt is denoted as εt so that ξt =
(
εt, ξ

′
−1,t
)′.

These standard assumptions ensure stationarity. Assumption 1 is the standard stationarity

condition for the coeffi cient matrix Φ. Assumption 2 is also standard in the literature which

implies the decomposition in (2) where r is the first element of R =
(
r,R−1

)
. ζt = R−1ξ−1,t is by

assumption uncorrelated with the observed shock εt, which is necessary for the consistency of the

estimation approaches below.

Under Assumptions 1-2, xt has the following moving average representation,

xt =

∞∑
h=0

s′n,1Φ
hut−h =

∞∑
h=0

s′n,1Φ
hrεt−h +

∞∑
h=0

s′n,1Φ
hζt−h =

∞∑
h=0

bhεt−h + et, (A.1)

where sn,1 = (1, 0, ..., 0)
′ is an n× 1 selection vector that selects the first element,

bh = s′n,1Φ
hr, for h = 0, 1, ..., (A.2)
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and et =
∑∞

h=0 s′n,1Φ
hζt−h. The sequence {bh}∞h=0 is the impulse response function of a unit shock

to εt on the variable of interest, xt. Each approach for a consistent estimation of {bh} is discussed

in Section 2 of the paper, with a more detailed discussion provided below on the consistency of the

most parsimonious, DL, ADL, ARDL, and VARDL approaches.

A.2 Discussion of competing approaches

A.2.1 The most parsimonious approach

The simplest, most parsimonious approach is based on:

xt = bhεt−h + vt, for h = 0, 1, 2, ..., hmax, (A.3)

where hmax can be a non-decreasing function of the available sample size, T , and vt is a generic

regression error term which clearly depends on the regression specification (suppressed in terms of

the notations), and it takes different forms throughout the paper including this Appendix. In the

context of (A.3), vt is given by (using the moving-average representation in (A.1)),

vt = et +
∞∑

j=0,j 6=h
bjεt−j . (A.4)

Clearly, vt is serially correlated but is uncorrelated with εt−h, and hence it is not surprising that

the LS estimate of bh using the auxiliary regression (A.3), denoted as b̂h, is consistent for any given

h.

A.2.2 DL

The DL approach is based on (5) where the corresponding regression error term is given by

vt = et +

∞∑
h=hmax+1

bhεt−h. (A.5)

vt given by (A.5) is uncorrelated with regressors, εt, εt−1, ..., εt−pT , in (5), and therefore the corre-

sponding LS estimates of the IRF coeffi cient vector bhmax = (b0, b1, ..., bhmax)
′, denoted as b̂DLhmax =
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(
b̂DL0 , b̂DL1 , ..., b̂DLhmax

)′
, will be consistent for any fixed hmax.A.1

A.2.3 ADL

So long as the regressors yt−hmax−1 are uncorrelated with εt−h for h = 0, 1, ..., hmax, it is not

surprising that, as in the case of the DL regressions, the same conclusion on the consistency holds.

When augmenting the DL regression in (5), it should be noted that it is not necessarily advisable

to use many regressors in yt to avoid overfitting.

A.2.4 ARDL

Autoregressive distributed lag approach involves univariate regressions featuring the current and

lagged values of εt as well as the lagged terms of the dependent variable, xt. Using (A.1), xt can be

decomposed into two orthogonal components, one that depends on {εt−h}∞h=0 and the other that

depends on the remaining shocks
{
ζt−h

}∞
h=0
:

xt = b (L) εt + et, (A.6)

where b (L) =
∑∞

h=0 bhL
h with bh, for h = 0, 1, ..., defined in (A.2). The error term et is co-

variance stationary, and from the Wold decomposition theorem (Wold, 1938), it has an MA(∞)

representation,

et = α (L) νt, (A.7)

where α (L) = 1−
∑∞

h=1 αhL
h, νt = et − Ê (et| et−1, et−2, ...), and Ê denotes the linear prediction

operator. We assume that ψ (L) = α−1 (L) = 1 −
∑∞

h=0 ψhL
h exists and its coeffi cients decay at

an exponential rate. Then, multiplying both sides of (A.6) by ψ (L) yields

ψ (L)xt = ψ (L) b (L) εt + ψ (L) et = β (L) εt + νt,

or

xt =

∞∑
h=1

ψhxt−h +
∞∑
h=0

βhεt−h + νt, (A.8)

A.1Similar to the LP approach, regression in (5) can also be run for hmax = 0, 1, 2, ..., H, which gives us H − h+ 1
different estimates of bh. All of these estimates are consistent, but these estimators are not pursued in the current
paper.
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where β (L) =
∑∞

h=0 βhL
h = ψ (L) b (L) and ψ (L) et = νt. Since ψ (L) and b (L) feature expo-

nentially declining coeffi cients, their product term, β (L), has exponentially declining coeffi cients

as well. The ARDL estimation of the IRF coeffi cients is based on the truncated version of (A.8)

as shown in (10). Since all the coeffi cients decay at an exponential rate, the truncation errors are

negligible when the truncation lags increase with the sample size at an appropriate rate.

A.2.5 VARDL

Let zst = (xt, q1t, q2t..., qs−1,t)
′ denote an (s × 1) vector of observed variables. Using the moving

average representation of the data generating process in (1), we have the following decomposition

similar to (A.6),

zst = S′szt = S′s

∞∑
h=0

ΦhRξt−h

=
∞∑
h=0

S′sΦ
hr1εt−h +

∞∑
h=0

S′sΦ
hR−1ζt−h

=
∞∑
h=0

bshεt−h + est,

= bs (L) εt + est (A.9)

where Ss is an (n× s) selection matrix that selects the first s elements of zt, bsh = S′sΦ
hr1, and

est =

∞∑
h=0

S′sΦ
hR−1ζt−h, for s = 2, 3, · · · , n− 1 and h = 0, 1, · · · . (A.10)

Note that est is an s-dimensional vector of covariance stationary variables. Similar to (A.7), est has

an MA(∞) representation,

est = As (L)νst, (A.11)

where νst has a zero mean with a constant variance, Ωuk. It is serially uncorrelated and independent

with εt′ for all t, t′, and the coeffi cients of As (L) = Is−
∑∞

h=1AshL
h decay at an exponential rate.

As in the ARDL approach, est is required to have an invertible vector MA(∞) representation so

that it can be expressed as a VAR(∞) process with exponentially decaying coeffi cients. To this

end, we assume that Ψs (L) = A−1s (L) = Is −
∑∞

h=0ΨshL
h exists and its coeffi cients decay at an

exponential rate.

A4



Multiplying both sides of (A.9) by Ψs (L) from the left and making use of the representation

in (A.11), we obtain similar to (A.8),

Ψs (L) zst = βs (L) εt + νst, (A.12)

where νst = Ψs (L) est, βs (L) = As (L)bs (L), and the coeffi cients of βs (L) decay at an exponen-

tial rate. The truncated version of (A.12) is given by (11), and the truncation lag errors become

negligible when the truncation lag increases with the sample size at an appropriate rate.

A.3 Experiments using design calibrated to a global output growth VAR

Our second simulation design is based on a quarterly international GDP dataset. Let zt =

(z1,t, z2,t, ..., zn,t)
′ be the (n × 1) vector of observations for n countries in period t where zit de-

notes the log first difference of real GDP in country i at quarter t. We consider n = 10 large

economies: Canada, China, France, Germany, Italy, Japan, Korea, Mexico, the United Kingdom,

and the United States, that account for a slightly more than a half of the global output in the

Purchasing Power Parity terms (in 2015). We estimate the following reduced-form VAR model,

zt = c+Φzt−1 + ut, (A.13)

using the sample 1980:Q3 - 2015:Q2 (140 quarterly observations). Let ĉ and Φ̂ respectively denote

the LS estimates of c and Φ in (A.13), and let Σ̂ be the estimate of the variance-covariance matrix

of ut in (A.13). We then generate simulated data z
(r)
t based on

z
(r)
t = ĉ+ Φ̂z

(r)
t−1 + u

(r)
t , (A.14)

for t = −M + 1,−M + 2, ..., 0, 1, 2, ..., T , with starting values z
(r)
−M = 0, where

u
(r)
t ∼ IIDN

(
0, Σ̂

)
.

We use superscript (r) to denote the individual MC replications, r = 1, 2, ..., R where R = 10, 000.

The first M = 100 generated observations are discarded to minimize the effects of initial values,

which leaves us with the available sample size of T . The U.S. is ordered the first in zt so as to
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estimate the generalized IRF function for the shock to U.S. output growth on its neighbor Canada.

We consider the same set of approaches and sample sizes discussed in the paper. Table A1 reports

the results of this simulation exercise by comparing the RMSE of each competing approach relative

to the benchmark of the VARX approach. The results appear to be qualitatively very similar to

that of Table 2.

Table A1: MC findings for the relative RMSE of estimating IRF coeffi cients in

design calibrated to international output dataset

T = 30 T = 150 T = 500

Approach \ horizon short medium long short medium long short medium long

The most parsimonious 1.43 3.53 9.92 2.33 7.00 23.06 2.50 7.55 24.04

DL 2.29 5.48 12.68 1.83 5.06 16.88 1.78 5.00 16.16

ADL, s = 1 2.74 6.97 16.98 1.86 5.17 17.34 1.79 5.02 16.26

ADL, s = 2 3.56 9.05 21.28 1.91 5.33 17.82 1.80 5.04 16.35

ADL, s = N >100 >100 >100 2.01 5.62 18.85 1.82 5.11 16.55

LP, s = 1 1.39 3.87 10.88 2.03 6.86 23.28 2.11 7.25 23.93

ALP, s = 1 1.19 3.43 12.85 1.66 4.77 16.97 1.71 4.90 16.14

LP, s = 2 1.36 4.19 11.80 1.78 6.88 23.61 1.85 7.15 23.99

ALP, s = 2 1.18 3.94 16.32 1.46 4.79 17.39 1.47 4.81 16.23

LP, s = N 1.75 6.61 20.85 1.66 7.18 24.78 1.64 7.17 24.27

ALP, s = N 1.52 7.57 >100 1.36 4.97 18.37 1.34 4.81 16.42

ARDL 1.12 0.81 0.33 1.66 1.95 1.08 2.19 3.96 2.78

VARDL, s = 2 0.82 0.37 0.26 1.24 1.03 1.06 1.37 2.10 2.25

VARDL, s = 3 0.82 0.46 0.32 1.15 0.85 0.70 1.43 1.22 1.06

VARDL, s = N 1.03 1.05 1.05 1.00 1.00 1.00 1.00 1.00 1.00

JLP 1.35 2.08 5.46 1.53 5.47 18.77 1.48 6.21 21.25

Notes: The entries represent the RMSE of each approach relative to the VARX benchmark. The DGP is given by VAR(1)

model in (A.14), which features coeffi cients in ĉ and Φ̂ estimated using real GDP growth data on n = 10 economies over the

sample period 1980Q3 - 2015Q2. The lowest (best) entries are highlighted by bold fonts. See Section A.3 and the notes in

Table 2 for further details.

A.4 Experiments using design calibrated to a U.S. macro dataset

Our third set of MC experiments is calibrated to a U.S. macro dataset. We obtain the dataset

used in the MC study by Jordà (2005) from the AEA website.A.2 This dataset contains monthly

observations from January 1960 to February 2001 for the following six variables: (i) log of non-

agricultural payroll employment; (ii) log of personal expenditure deflator; (iii) annual growth rate

A.2http://www.aeaweb.org/aer/data/mar05_data_jorda.zip (the unpacked file evnew.csv).
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of the index of sensitive material prices by the Conference Board; (iv) federal funds rate; (v) ratio

of nonborowed reserves plus extended credit to total reserves; and (vi) annual growth rate of M2.

Collecting these variables in the vector zt (using the above ordering), we estimate a VAR(p0) model

zt = c+

p0∑
`=0

Φ`zt−` + ut, (A.15)

and identify the monetary policy shock using the Christiano-Eichenbaum-Evans recursive identifi-

cation strategy as described in Section 2.2 of Evans and Marshall (1998). In particular, let ĉ, Φ̂`, ût

denote the LS reduced-form estimates, and let Σ̂ denote the estimated variance-covariance matrix

of error term. Note that federal funds rate is ordered as the fourth after the variables (i)-(iii).

After obtaining the lower triangular Cholesky factorization of Σ̂ = ĈĈ
′
, we compute ε̂t = Ĉ−1ût,

of which the fourth element is the normalized identified monetary policy shock with a unit variance.

The DGP is then given by

z
(r)
t = ĉ+

p0∑
`=0

Φ̂`z
(r)
t−` + Ĉε

(r)
t , (A.16)

for t = p+ 1, p+ 2, ..., T , with initial values z
(r)
` = z` for ` = 1, 2, ..., p0. As in Evans and Marshall

(1998), we consider the lag length of p0 = 12. Such a large lag length makes the VAR(p0) in zt

and JLP infeasible for the relatively short time span of T = 30, due to a large number of unknown

parameters to estimate. These two approaches are therefore no longer considered here, and hence

we choose the parsimonious LP approach with s = 1 as a benchmark instead of the VARX model.

In addition to being proliferated with parameters, this design differs from the previous two designs

in that it is calibrated to data series that are not mean reverting, which violates the stationarity

assumption. This renders the most parsimonious and DL approaches not applicable because the

regressions in (5) and (A.3) are no longer well balanced. These two approaches are therefore not

considered in this design. We take the non-normalized monetary policy shock ε(r)MP,t = ĉ44ε
(r)
4,t

as observed, where ĉ44 is the element (4, 4) of the matrix Ĉ. We use the applicable competing

approaches under study to estimate the impact of the monetary policy shock on federal funds rate.

Each estimation approach is implemented as in the previous two sets of experiments. Table A2

reports the relative RMSE results. As can be seen from Table A2, the simulation results largely

confirm our main conclusions drawn from the previous two MC results.
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Table A2: MC findings for the relative RMSE of estimating IRF coeffi cients in

design calibrated to U.S. macro dataset.

T = 30 T = 150 T = 500

Approach \ horizon short medium long short medium long short medium long

ADL, s = 1 1.95 1.08 0.63 3.57 1.86 1.24 8.24 4.49 3.15

ADL, s = 2 2.00 1.35 0.84 2.67 1.48 1.02 2.92 1.57 1.10

ADL, s = N 2.38 1.90 1.06 2.00 1.22 0.87 2.14 1.17 0.80

LP, s = 1 (benchmark) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ALP, s = 1 0.71 0.88 1.44 0.75 0.99 1.07 0.75 0.96 1.01

LP, s = 2 1.47 1.55 1.03 1.02 1.22 1.17 0.97 1.00 1.01

ALP, s = 2 0.79 0.65 0.59 0.69 0.86 0.90 0.73 0.96 0.99

LP, s = N 2.78 2.35 0.84 1.24 1.98 1.70 0.91 1.02 0.96

ALP, s = N 1.18 0.97 0.67 0.63 0.72 0.74 0.63 0.76 0.72

ARDL 0.67 0.76 1.04 0.65 1.43 3.27 0.58 0.78 0.90

VARDL, s = 2 0.66 0.58 0.99 1.03 3.60 5.26 0.49 0.74 0.91

VARDL, s = 3 0.73 0.44 0.54 0.86 2.71 3.19 0.47 0.76 1.29

VARDL, s = N 1.17 0.85 0.68 0.51 0.68 0.70 0.55 2.67 4.89

Notes: The entries represent the RMSE of each approach relative to the benchmark of the LP approach with s = 1. The DGP

is given by VAR(12) model in (A.16), which features coeffi cients ĉ, Φ̂`, for ` = 1, 2, ..., 12, and Ĉ estimated based on U.S.

macro dataset taken from Evans and Marshall (1998) and Jordà (2005). The lowest (best) entries are highlighted by bold

fonts. See Section A.4 and the notes in Table 2 for further details.
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A.5 Comparison of Iterative methods using AIC and BIC

Table A3: Monte Carlo findings for the relative RMSE of estimating IRF coeffi cients

with iterative methods using AIC and BIC in DGP1

n = 6, T = 30 n = 6, T = 150 n = 6, T = 500
Approach \ horizon short medium long short medium long short medium long

ARDL, BIC 0.87 0.69 0.31 1.10 1.12 0.69 1.21 1.23 0.81
ARDL, AIC 0.99 0.91 0.42 1.19 1.44 0.99 1.27 1.53 1.66
VARDL, s = 2, BIC 0.58 0.37 0.33 1.15 1.25 0.65 1.39 1.60 0.78
VARDL, s = 2, AIC 0.62 0.38 0.33 1.21 1.35 0.77 1.27 1.43 1.07
VARDL, s = 3, BIC 0.73 0.66 0.45 1.08 1.20 1.19 1.20 1.29 1.23
VARDL, s = 3, AIC 0.77 0.68 0.46 1.27 1.69 1.58 1.35 2.13 2.42
VARDL, s = n, BIC 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00
VARDL, s = n, AIC 1.05 1.07 1.07 1.02 1.02 1.02 1.03 1.01 1.01

n = 12, T = 30 n = 12, T = 150 n = 12, T = 500
short medium long short medium long short medium long

ARDL, BIC 0.63 0.30 0.04 0.96 0.50 0.16 1.02 0.90 0.54
ARDL, AIC 0.72 0.55 0.07 1.17 2.78 0.61 1.23 3.48 3.19
VARDL, s = 2, BIC 0.37 0.10 0.04 0.63 0.39 0.45 0.80 0.67 0.92
VARDL, s = 2, AIC 0.42 0.10 0.04 0.95 1.76 1.05 1.10 2.63 2.18
VARDL, s = 3, BIC 0.40 0.12 0.05 0.59 0.35 0.43 0.63 0.43 0.60
VARDL, s = 3, AIC 0.45 0.13 0.06 0.88 1.09 0.72 1.00 1.38 1.06
VARDL, s = n, BIC 1.10 1.31 2.34 1.00 1.00 1.00 1.00 1.00 1.00
VARDL, s = n, AIC 1.15 1.46 2.63 1.02 1.05 1.01 1.01 1.03 1.01

Notes: Entries represent the ratio of the average RMSE of estimating bh from each approach to that of the

benchmark VARX approach. The values smaller than one indicate the cases where the RMSE of the corresponding

approach is smaller (and hence better) than that of the benchmark approach. Numbers in bold face indicate the

cases with the lowest (best) values. IRF horizon ‘short’stands for h = 0, 1, 2, ‘medium’for h = 3, 4, 5 and ‘long’for

h = 6, 7, 8. The DGP is a VAR(1) model shown in (13), where the reduced form coeffi cient matrix (Φ) is generated

randomly from (14) for each n and kept fixed across replications. Descriptions of each approach are provided in

Section 2. Section 3 provides a full description of MC experiments.
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Table A4: MC findings for the relative RMSE of estimating IRF coeffi cients with

iterative methods using AIC and BIC in design calibrated to international output

dataset

T = 30 T = 150 T = 500

Approach \ horizon short medium long short medium long short medium long

ARDL, BIC 1.12 0.81 0.33 1.66 1.95 1.08 2.19 3.96 2.78

ARDL, AIC 1.21 1.16 0.46 1.66 2.84 1.75 1.81 3.43 4.46

VARDL, s = 2, BIC 0.82 0.37 0.26 1.24 1.03 1.06 1.37 2.10 2.25

VARDL, s = 2, AIC 0.84 0.39 0.30 1.41 2.10 1.51 1.48 2.79 2.47

VARDL, s = 3, BIC 0.82 0.46 0.32 1.15 0.85 0.70 1.43 1.22 1.06

VARDL, s = 3, AIC 0.85 0.48 0.36 1.33 1.74 1.41 1.34 1.92 1.89

VARDL, s = n, BIC 1.03 1.05 1.05 1.00 1.00 1.00 1.00 1.00 1.00

VARDL, s = n, AIC 1.08 1.15 1.17 1.01 1.01 1.01 1.01 1.01 1.00

Notes: The entries represent the RMSE of each approach relative to the VARX benchmark. The DGP is given by VAR(1)

model in (A.14), which features coeffi cients in ĉ and Φ̂ estimated using real output growth data on n = 10 economies over the

sample 1980Q3 - 2015Q2. See Section A.3 and the notes in Table 2 for further details.

Table A5: MC findings for the relative RMSE of estimating IRF coeffi cients with

iterative methods using AIC and BIC in design calibrated to U.S. macro dataset.

T = 30 T = 150 T = 500

Approach \ horizon short medium long short medium long short medium long

ARDL, BIC 0.67 0.76 1.04 0.65 1.43 3.27 0.58 0.78 0.90

ARDL, AIC 0.69 0.76 0.98 0.64 1.03 1.99 0.58 0.79 0.90

VARDL, s = 2, BIC 0.66 0.58 0.99 1.03 3.60 5.26 0.49 0.74 0.91

VARDL, s = 2, AIC 0.60 0.62 1.05 0.61 0.94 1.69 0.49 0.73 0.84

VARDL, s = 3, BIC 0.73 0.44 0.54 0.86 2.71 3.19 0.47 0.76 1.29

VARDL, s = 3, AIC 0.61 0.45 0.57 0.59 0.84 1.19 0.47 0.69 0.83

VARDL, s = n, BIC 1.17 0.85 0.68 0.51 0.68 0.70 0.55 2.67 4.89

VARDL, s = n, AIC 0.88 0.80 0.68 0.51 0.67 0.76 0.32 0.48 0.57

Notes: The entries represent the RMSE of each approach relative to the benchmark of the LP approach with s = 1. The DGP

is given by VAR(12) model (A.16), which features coeffi cients ĉ, Φ̂`, for ` = 1, 2, ..., 12, and Ĉ estimated based on U.S. macro

dataset taken from Evans and Marshall (1998) and Jordà (2005). See Section A.4 and the notes in Table 2 for further details.
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