
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

ARCHITECTURAL DESIGN SPECIFICATION

CSE 4317: SENIOR DESIGN II
SUMMER 2022

NURSIM

VR PALLIATIVE CARE

EMELYNE HOANG

JACKSON PARK

JORGE RODRIGUEZ

RAFEL TSIGE

NurSim - Summer 2022 page 1 of 19

REVISION HISTORY

Revision Date Author(s) Description
0.1 04.04.2022 EH document creation
0.2 04.09.2022 EH, JP, JR, RT initial draft
0.3 04.11.2022 EH modified introduction
1.0 04.11.2022 EH, JP, JR, RT finalized version 1
1.1 04.23.2022 EH corrected subsystem ids
1.2 04.24.2022 EH reworded subsystem descriptions
1.3 05.01.2022 EH changed team logo, updated data flow description
2.0 05.01.2022 EH, JP, JR, RT finalized version 2
2.1 07.13.2022 EH updated text to reflect current testing equipment
2.2 07.15.2022 EH updated figures to reflect current testing equipment
2.3 08.10.2022 EH corrected inconsistent parts of text
3.0 08.14.2022 EH, JP, JR, RT finalized version 3

NurSim - Summer 2022 page 2 of 19

CONTENTS

1 Introduction 5

2 System Overview 6
2.1 User Interface Layer . 6
2.2 VR Simulation Software Layer . 6

3 Subsystem Definitions & Data Flow 8

4 User Interface Layer Subsystems 9
4.1 Controllers . 9
4.2 Headset . 10
4.3 PC . 11

5 VR Simulation Software Layer Subsystems 13
5.1 OpenXR Plugin . 13
5.2 Game Engine . 14
5.3 Scenes . 15
5.4 Entity Handler . 16
5.5 Component Manager . 17

NurSim - Summer 2022 page 3 of 19

LIST OF FIGURES

1 A simple architectural layer diagram . 6
2 A simple data flow diagram . 8
3 Controllers subsystem description diagram . 9
4 Headset subsystem description diagram . 10
5 PC subsystem description diagram . 11
6 OpenXR subsystem description diagram . 13
7 Game Engine subsystem description diagram . 14
8 Scenes subsystem description diagram . 15
9 Entity Handler subsystem description diagram . 16
10 Component Manager subsystem description diagram . 17

LIST OF TABLES

1 Controllers subsystem interfaces . 10
2 Headset subsystem interfaces . 11
3 PC subsystem interfaces . 12
4 OpenXR subsystem interfaces . 14
5 Game Engine subsystem interfaces . 15
6 Scenes subsystem interfaces . 16
7 Entity Handler subsystem interfaces . 17
8 Component Manager subsystem interfaces . 18

NurSim - Summer 2022 page 4 of 19

1 INTRODUCTION

The nursing department is in need of a tool to prepare students to provide care for patients in a hospice
setting. This project is designed to accomplish that by simulating experiences that commonly occur
when treating a patient in hospice care. These simulations will be virtual reality scenes designed within
the Unity game engine and will be able to run in one of two ways: run directly via Unity or packaged
into an APK then uploaded and run on the headset. The targeted scenarios for development include
meeting the patient for the first time in the hospital, visiting the patient’s home and conducting safety
checks, providing in-home palliative care for the patient, and finally providing postmortem care for the
body of the patient after they have passed. These scenes will be populated by objects which will be
referred to as entities, and these entities will be further organized into components. Components are
the data associated with each entity. The user will be able to experience each scene using a VR headset
and will also be able to interact with the environment using VR controllers. This project is intended to be
used with any VR equipment compatible with OpenXR. Development and testing will be accomplished
via the Oculus Quest 2.

The end goal is for the simulation to be used across many universities in order to contribute to the
knowledge and experience of palliative care among nursing students as a whole. As a short term goal,
this VR simulation will be used by the UTA undergraduate nursing students who will perform one of the
four scenarios per semester while completing the undergraduate nursing program. The simulation may
be completed with a solo user or with a trainer. This project has been in development since 2019 and
has been worked on by several teams already. Each of these teams was assigned one of the previously
mentioned scenarios to develop. In addition, progress has seen significant disruption due to the situation
caused by the COVID-19 pandemic, meaning some teams did not develop their scenarios for VR.

The previous Senior Design 2 Fall 2021 team has performed systems integration by combining func-
tioning aspects of the project into a cohesive product. This includes modifying and fixing scenarios 1
and 2 in order to meet all requirements needed for each scenario and creating a fourth scenario in accor-
dance with project requirements. This team also planned to or have already added quality-of-life (QoL)
improvements to enhance simulation experience such as a time system with which the user can see the
time and record the amount of time spent completing a task, adjusting the communication interface
in order to fit the most amount of text as possible, and implementing voice acting for all non-playable
characters (NPCs). Other QoL improvements include implementing a fast travel system to decrease
time spent on travelling across the play space and to minimize dizziness and other symptoms typical
of playing VR, as well as including a list of high-level objectives for the player in case they are unsure
of what needs to be done next. The latter QoL improvement will not give hints to tasks that are worth
points.

The primary objective of the Senior Design 2 Summer 2022 team is to perform a final requirement
and performance check for each scenario, as well as modifying scenario entities to be more consistent
across scenarios in order to increase simulation immersion. Any QoL improvements mentioned previ-
ously that have not yet been implemented will also be done by this team.

NurSim - Summer 2022 page 5 of 19

2 SYSTEM OVERVIEW

The system overview of our project consists of two high level layers: the User Interface Layer and the VR
Simulation Software Layer. The User Interface Layer is made up of the systems which enable the user
to input data to affect the virtual reality environment and receive feedback on what those effects are.
Depending on the method used to run the simulation, the VR Simulation Software Layer either contains
or creates the environment the user will interact with, dictates what happens when components of the
environment are interacted with, and outlines the events that the user will experience. Users will be
able to run the program in one of two ways: directly via the Unity game engine or packaged into an
APK that is uploaded and run on the VR headset.

Figure 1: A simple architectural layer diagram

2.1 USER INTERFACE LAYER

The User Interface Layer consists of all actions that are made by there user while using the VR hardware.
This layer specifies any and all forms of potential input the user can give to the software. This includes
the accelerometer, gyroscope, and cameras in the headset that help it determine the user’s location and
the direction the user’s head is facing, the buttons on the hand controllers along with the controller’s
position, as well as many other sensors and controls. When running the simulation via Unity, this is also
where the game engine will send the visual and audio output that is generated to the user so that the user
can then respond. Otherwise, these will be generated by the software uploaded to the headset. Visual
text boxes, images, HUD information, amongst many other aspects of this project are all communicated
to the user through this layer. There will be two types of users, the simulation proctor and the student
partaking in the simulation. The interface for each type will remain mostly the same, however some
minor differences include point system and log of actions taken.

2.2 VR SIMULATION SOFTWARE LAYER

The VR Simulation Software Layer consists of all of the software tools needed to generate the virtual
reality environment and process updates as the user interacts with the system. The OpenXR plugin maps
inputs and outputs between various VR headsets and controllers and the Unity engine allows the project
to be used on a wider variety of VR devices. The Unity engine gathers the mapped data from OpenXR
and asset data stored locally and inputs that into the current scene for processing while in return it

NurSim - Summer 2022 page 6 of 19

takes updates from the scenes and sends it back through OpenXR for mapping to eventually update
the user on how the VR environment has changed. The engine also provides critical functionality for
things like physics, collision, and rendering. Scenes are comprised of all of the entities that populate
the 3D environment. Scenes take the input data from the game engine and transfers that to the affected
entities. The entity handler processes all of the communication between the different entities and sends
that data to the component manager. The component manager processes what events should occur like
movement, physics, and collision by using the associated scripts. This data is then sent back to the entity
handler which will then update the state of the affected entities, and finally update the scene. When
packaged, these things will be done by the APK uploaded to the headset.

NurSim - Summer 2022 page 7 of 19

3 SUBSYSTEM DEFINITIONS & DATA FLOW

Each high-level layer of the system overview is composed of a group of subsystems that detail how data
flows within and between each layer. Within the User Interface Layer are the controllers, headset, and
PC, while the VR simulation software layer is composed of the OpenXR plugin, game engine, scenes,
entity handler, and component manager. As displayed in Figure 2, data flows unidirectionally from the
controllers to the headset and bidirectionally between the headset and PC. The PC is where data flows
between the User Interface Layer and VR Simulation Software Layer via the OpenXR plugin. There, data
has bidirectional flow between the OpenXR plugin and game engine, game engine and scenes, scenes
and entity handler, and finally the entity handler and component manager.

Figure 2: A simple data flow diagram

NurSim - Summer 2022 page 8 of 19

4 USER INTERFACE LAYER SUBSYSTEMS

The User Interface Layer accounts for all of the devices that the user will interact with. This includes the
controllers, the headset, and the PC. This layer takes input from the user and forwards the data either
directly to the VR Simulation Software Layer or to the APK built by that layer. This layer can also take
in simulation updates and display that information to the user.

4.1 CONTROLLERS

As this is a VR project, input must include both button presses and user hand gestures. The Controllers
will allow the user to interface with the VR scenarios using both of these methods. Additionally, the
Controllers will also aid the Headset in inside-out tracking by producing IR signals that are accepted by
the Headset to discern the direction the body of the user is facing. The project is currently being tested
using Oculus Quest 2 controllers, but because the OpenXR plugin for Unity is being used in development,
other VR setups should be supported.

Figure 3: Controllers subsystem description diagram

4.1.1 ASSUMPTIONS

We assume that the controllers’ batteries are working or charged, that there are no software or hardware
issues with the controllers, and that they can be detected by the headset. It is also assumed that two
controllers, left and right, are used in order to operate the system.

4.1.2 RESPONSIBILITIES

The responsibility of the controllers is to allow the user to interact with objects within the VR environ-
ment through movements and button presses. This includes selecting destinations for user movement,
interacting with objects, and selecting menu options. The Controllers are also responsible for aiding the
Headset in inside-out tracking using its IR tracking dots.

NurSim - Summer 2022 page 9 of 19

4.1.3 SUBSYSTEM INTERFACES

Table 1: Controllers subsystem interfaces

ID Description Inputs Outputs

#02 Headset Interface

IR Signals
User Actions
Hand Movements
Button Presses

Visual Data

4.2 HEADSET

The headset is capable of operating as an independent console that can run programs without the use of
additional external hardware, with the only exception being the controllers that come with it. As such,
it is also capable of independently monitoring its own location and direction, with only minimal input
from the user, using inside-out tracking. When running via the APK, user input from the controllers will
be collected by the headset, which will then process, update, and display the effects of those actions
on the game state to the user. The program software that will dictate these effects will be uploaded
to the headset via the PC. When run via Unity, these things will be done directly by the VR Simulation
Software Layer through the PC.

Figure 4: Headset subsystem description diagram

4.2.1 ASSUMPTIONS

We assume that the headset will process input from the controllers correctly, as well as the effects of that
input in the game state, and that there are no issues uploading the program software onto the headset
via the PC if this method is used. We will also assume that the user has access to the the headset and
that there are no mechanical or software issues with the headset.

NurSim - Summer 2022 page 10 of 19

4.2.2 RESPONSIBILITIES

Inputs and outputs are used to allow the user to interact with the simulation environment. Accurate
headset direction, location and low latency are keys for an immersive simulation experience and user
satisfaction.

4.2.3 SUBSYSTEM INTERFACES

Table 2: Headset subsystem interfaces

ID Description Inputs Outputs

#01 Controller Interface N/A

IR Signals
User Actions
Hand Movements
Button Presses

#03 PC Interface (Unity)
User Actions
Hand Movements
Button Presses

Game Updates

#03 PC Interface (APK) N/A Program Software

4.3 PC

The PC can either send information between the headset and VR Simulation Software Layer or upload
the program software onto the headset. It is also the hardware where we will create, modify, test, and
build the software package.

Figure 5: PC subsystem description diagram

4.3.1 ASSUMPTIONS

The PC will contain hardware and software capable of running and hosting the VR application and VR
equipment. If it is desired to use the simulation wirelessly, the PC is assumed to have access to a wireless

NurSim - Summer 2022 page 11 of 19

adapter.

4.3.2 RESPONSIBILITIES

The PC is responsible for hosting the VR application and ensuring it has the necessary resources to
operate during testing. The PC is also responsible for creating and building the program software on the
Unity game engine. During the testing phase, the simulation should be able to run on both a wired and
wireless connection. At present, there is only support for a wired connection since the PC is connected
to the internet via Ethernet.

4.3.3 SUBSYSTEM INTERFACES

Table 3: PC subsystem interfaces

ID Description Inputs Outputs

#02 Headset Interface (Unity) Game Updates
User Actions
Hand Movements
Button Presses

#02 Headset Interface (APK) Program Software Visual Data

NurSim - Summer 2022 page 12 of 19

5 VR SIMULATION SOFTWARE LAYER SUBSYSTEMS

The VR Simulation Software layer is the application layer of the project. It manages scenes, assets, and
game updates and builds the program software for upload onto the User Interface layer. This layer is
also capable of taking in the user’s actions and location, and outputting game and graphics updates.

5.1 OPENXR PLUGIN

The OpenXR Plugin serves as the interface between the Unity application and the VR system. The plugin
handles various functionality including frame composition, peripheral management, and raw tracking
information. OpenXR also allows cross platform VR functionality for application use.

Figure 6: OpenXR subsystem description diagram

5.1.1 ASSUMPTIONS

Both the Oculus Quest 2 and the HTC Vive can be used with OpenXR. The plugin is available for the
2020.3 version of Unity.

5.1.2 RESPONSIBILITIES

OpenXR manages input from the VR system such as the controller location, various tracking positions.
The plugin is also responsible for ensuring the PC receives the rendered frames to be used for the user’s
graphics.

NurSim - Summer 2022 page 13 of 19

5.1.3 SUBSYSTEM INTERFACES

Table 4: OpenXR subsystem interfaces

ID Description Inputs Outputs

#03 PC Interface
Player Movement
Player Actions
User Movement

Application Graphics
Game Updates

#05 Game Engine Interface
Application Graphics
Game Updates
In-Game Movement

Player Movement
Player Actions

5.2 GAME ENGINE

The Game Engine manages all scenes and assets as well as being the location for all necessary plugins
and extensions. It enables the VR application to have physics, collision, VR implementation, and general
game aspects.

Figure 7: Game Engine subsystem description diagram

5.2.1 ASSUMPTIONS

The Unity Game Engine will support OpenXR as well as be able to provide a functional end product for
academic use.

5.2.2 RESPONSIBILITIES

The Unity Game Engine is responsible for managing all assets that the application uses including ma-
terials and game objects. The game engine also provides necessary features such as physics, collision,
and 3-D rendering.

NurSim - Summer 2022 page 14 of 19

5.2.3 SUBSYSTEM INTERFACES

Table 5: Game Engine subsystem interfaces

ID Description Inputs Outputs

#04 OpenXR Plugin Interface
Player Movement
Player Actions

Graphics
Game Updates
In-Game Movement

#06 Scenes Interface
In-Game Movement
Game Updates

Player Movement
Player Actions

5.3 SCENES

Updates the states for all the entities in the game, including the player. It also calculates physics and
interactions. Update happens one time for each frame [1].

Figure 8: Scenes subsystem description diagram

5.3.1 ASSUMPTIONS

The Scenes receive all the information it needs from the Entity Handler. To reach a frame rate of 60
frames per second, updating all the entities and drawing them to the screen should happen within 16.6
milliseconds of each frame [1].

5.3.2 RESPONSIBILITIES

All entities, physics, and interactions must be updated for each frame. The Scenes will not need to store
any of this information, only pass it down to the Entity Handler [1].

NurSim - Summer 2022 page 15 of 19

5.3.3 SUBSYSTEM INTERFACES

Table 6: Scenes subsystem interfaces

ID Description Inputs Outputs

#05 Game Engine Interface
User Actions
User Movement

Game Updates
In-Game Movement

#07 Entity Handler Interface
Entity Information
User Input Affecting Entities

Entities to be Updated

5.4 ENTITY HANDLER

The Entity Handler subsystem is responsible for every entity communication in the game. Most of the
entities must interface with the Entity Handler in order for the subsystem to effectively manage all
data pass between each entity. This includes the Player, Patient, NPC, Camera, Listener, and General
Objects. The Entity Handler will also correspond with the Component Manager, which will update new
information about entities and then pass these updates to the Scenes [1].

Figure 9: Entity Handler subsystem description diagram

5.4.1 ASSUMPTIONS

It is assumed that Entity Handler handles all information correctly.

5.4.2 RESPONSIBILITIES

The Entity Handler must manage all entities in the simulation. Every change made to entity data must
be handled by this subsection. It is also used for sending and retrieving entity data to and from the
Component Manager and Scenes [1].

NurSim - Summer 2022 page 16 of 19

5.4.3 SUBSYSTEM INTERFACES

Table 7: Entity Handler subsystem interfaces

ID Description Inputs Outputs

#06 Scenes Interface Data on entities to be updated
Updated Entity Information
User Input Affecting All Entities

#08 Component Manager
Interface

Updated Player Data
Updated Patient Data
Updated Camera Data
Updated Listener Data
Updated General Objects Data

Current Player Data
Current Patient Data
Current Camera Data
Current Listener Data
Current General Objects Data

5.5 COMPONENT MANAGER

The Component Manager deals with the attributes of the subsystems handled by the Entity Handler and
their behaviors in the world. The smaller subsystems of the Component Manager are the interactivity
scripts, movement scripts, physics, and collision [1].

Figure 10: Component Manager subsystem description diagram

5.5.1 ASSUMPTIONS

The component managers reads the data from other subsystems, but cannot alter any of them [1].

5.5.2 RESPONSIBILITIES

The component manager is responsible for gathering the data from other smaller subsystems that are
requested by the Entity Handler [1].

NurSim - Summer 2022 page 17 of 19

5.5.3 SUBSYSTEM INTERFACES

Table 8: Component Manager subsystem interfaces

ID Description Inputs Outputs

#07 Entity Handler Interface

Request from the Entity Component
for a Component’s Information
Data from Smaller Subsystems within
Component Manager

Requested Data

NurSim - Summer 2022 page 18 of 19

REFERENCES

[1] VRx. VR Nursing CSE Senior Design. https://blog.uta.edu/cseseniordesign/2021/05/04/vrx-3/,
2021. Accessed: 2022-04-10.

NurSim - Summer 2022 page 19 of 19

