
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

ARCHITECTURE DESIGN SPECIFICATION

CSE 4316: SENIOR DESIGN I
FALL 2019

OVRWORKED

COOKUMS

KASI CROSS

GEETESH KALAKOTI

JOHN LIVESAY

QUINTON TOMPKINS

KEVIN TUNG

oVRworked - Fall 2019 page 1 of 16



REVISION HISTORY

Revision Date Author(s) Description
0.1 12.01.2019 QT document creation
1.0 12.07.2019 KC, GK, JL, QT,

KT
initial draft

oVRworked - Fall 2019 page 2 of 16



CONTENTS

1 Introduction 5

2 System Overview 6
2.1 Hardware Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 API Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Engine Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Subsystem Definitions & Data Flow 7

4 Hardware Layer Subsystems 8
4.1 Virtual Reality Kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 API Layer Subsystems 9
5.1 OpenVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 Engine Layer Subsystems 10
6.1 Unity Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2 Player Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3 Entity Director . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6.4 SteamVR Interaction System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.5 Gameplay Director . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

oVRworked - Fall 2019 page 3 of 16



LIST OF FIGURES

1 A simple architectural layer diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 A simple data flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 The Virtual Reality Kit Subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 The OpenVR Subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 The Unity Engine Subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6 The Player Controller Subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7 The Entity Director Subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
8 The SteamVR Interaction Subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
9 The Gameplay Director Subsystem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

LIST OF TABLES

2 Virtual Reality Kit Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 OpenVR interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Unity Engine interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Player controller interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6 Entity director interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7 SVRIS interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8 Gameplay director interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

oVRworked - Fall 2019 page 4 of 16



1 INTRODUCTION

Cookums is a virtual reality food truck simulation game built with Unity. The game will consist of 3 main
features. The ability to cook and interact with food, the ability to receive orders from customers, and
the ability to deliver the orders to customers and receive a score based on performance and correctness.

Unity games are built with a component based structure. Rather than outline how Unity organizes
classes, this document will outline the overall gameplay system’s major components and interactions
with the engine, along with OpenVR and the VR kit’s role in the overlying system architecture.

Gameplay will have an emphasis on using your hands to gather ingredients, prepare them into complete
foods, and then serving them in a fast paced, exciting environment.

oVRworked - Fall 2019 page 5 of 16



2 SYSTEM OVERVIEW

The system is comprised of three distinct layers: the hardware layer, the API layer, and the engine layer.

Figure 1: A simple architectural layer diagram

2.1 HARDWARE LAYER

The hardware layer includes the virtual reality kit that serves as the one and only source of input and
output for the user, making it critical to the project. At minimum, the kit is composed of a left and right
hand controller and a head mounted display (HMD). The kit will supply the rest of the system with
information about the user’s keypresses along with hand and head transforms relative to the play area.
In return, the hands may receive haptic feedback and the HMD will have continuous imagery provided
by the system. No business logic is present in this layer; it is entirely an I/O peripheral.

2.2 API LAYER

The API layer consists of the OpenVR system’s API and runtime. It is responsible for serving as an
intermediary of data between the hardware layer and the engine layer, bridging the gap between hard-
ware and software. This layer provides support to a multitude of virtual reality kits and abstracts each
individual kit’s I/O into a unified interface that works for all.

2.3 ENGINE LAYER

The engine layer includes the entirety of gameplay elements, and handles several critical components.
Unity handles lighting, rendering, physics and collision detection. The remaining subsystems handle
other gameplay elements unique to Cookums. Unity coordinates interaction between the player con-
troller, entities, and gameplay direction through ordering, difficulty, and customer AI agents. The enti-
ties are grouped collectively and labelled as the entity director subsystem, and the SteamVR Interaction
System works to create a seamless connection for the player controller to work with other systems.

oVRworked - Fall 2019 page 6 of 16



3 SUBSYSTEM DEFINITIONS & DATA FLOW

Figure 2: A simple data flow diagram

oVRworked - Fall 2019 page 7 of 16



4 HARDWARE LAYER SUBSYSTEMS

The Hardware Layer contains the Virtual Reality Kit. This layer will manage the player’s interactions
and observations of the system, communicating to the API layer about the player’s actions and receiving
input for the player to see and feel.

4.1 VIRTUAL REALITY KIT

The Virtual Reality Kit communicates with the player via visual and physical stimulus. It will send
and recieve data to the player. It will send data about the player’s movement that is collected via the
headset and the controllers. It will receive data for the player to see through the headset and feel
through vibrations in the controllers.

Figure 3: The Virtual Reality Kit Subsystem.

4.1.1 ASSUMPTIONS

The player wil be able to see the game through the headset and feel vibrations from the game through
the controllers. The movement of headset and controller when in range of sensors should be detected
and should send movement information correctly to the API layer.

4.1.2 RESPONSIBILITIES

The Virtual Reality Kit will include positional sensors, a headset, and two controllers. The sensors will
know the location and direction of the player’s hands and head based off the hardware location and
position. The headset will display visual information to the player. The controllers will vibrate when
told to by lower layers. The controllers also have buttons for the player to use to capture and issue
events to the API layer.

4.1.3 VIRTUAL REALITY KIT INTERFACES

Table 2: Virtual Reality Kit Interfaces

ID Description Inputs Outputs

#1 OpenVR Connection
Visual feedback
Haptic feedback

User position
User inputs

oVRworked - Fall 2019 page 8 of 16



5 API LAYER SUBSYSTEMS

5.1 OPENVR

The API layer consists of just the OpenVR subsytem. The OpenVR subsytem communicates with the
virtual reality kit subsystem and the Unity Engine subsystem, bridging the gap between hardware and
software in a unified interface for all virtual reality kits. This was chosen in order to reduce the amount
of work necessary for the project.

Figure 4: The OpenVR Subsystem.

5.1.1 ASSUMPTIONS

The Virtual Reality Kit must be connected either by cable or WiFi adapter to allow data flow. The user
has the OpenVR runtime installed.

5.1.2 RESPONSIBILITIES

OpenVR’s main role is to relay information from the Hardware Layer to the Engine Layer. The player’s
head movement translations, and left-hand/right-hand movement translations from the Virtual Reality
Kit is recorded and passed down to the API Layer, where OpenVR then translates that data to the Engine
Layer, enabling the Engine Layer to make the same translations inside Unity.

5.1.3 OPENVR INTERFACES

Table 3: OpenVR interfaces

ID Description Inputs Outputs

#1 Hardware layer dataflow
with data specific to VR
kit

User head position
User hand position
Button presses

Visual feedback
Haptic feedback

#2 Engine layer dataflow
with data abstracted to
engine

Abstracted visual
feedback
Abstracted haptic
feedback

Abstracted head,
hand position
Abstracted button
presses

oVRworked - Fall 2019 page 9 of 16



6 ENGINE LAYER SUBSYSTEMS

6.1 UNITY ENGINE

The Unity Engine subsystem facillitates communication and coordinates the other components of the
game. It also handles physics, objects, lighting, rendering, collision, and other basic modern game
engine capabilities. As a note, SRVIS is shorthand for the SteamVR Interaction System.

Figure 5: The Unity Engine Subsystem.

6.1.1 ASSUMPTIONS

The user’s operating system supports the executables exportable by Unity.

6.1.2 RESPONSIBILITIES

The Unity Engine controls every other subsystem for gameplay, keeping track of delta time between
frames, the gameobject node hierarchy, and the actual application process.

The primary purpose includes rendering each frame, and calling the necessary functions of each subsys-
tem to update the game state and visual appearance. The other subsystem functions can be triggered
because of a frame update, a threshold being reached (such as the passage of time), an entity entering
a collision area with some form of trigger, or because some button press was made by the user. From
there, the function within the subsystem will update the game state and may necessiate a different
subsystem’s function, which gets Unity to fire off the the function.

oVRworked - Fall 2019 page 10 of 16



6.1.3 UNITY ENGINE INTERFACES

Table 4: Unity Engine interfaces

ID Description Inputs Outputs

#2 User I/O to upper layers

OpenVR input
bindings
OpenVR positional
data

Rendered frames
Haptic feedback
data

#3 Player orientation data in world
Info for SVRIS
User game orien-
tation data

User real orienta-
tion data

#4 Updating of world entites Entity properties
Delta time elapsed
Manipulation by
SVRIS

#5 VR Interaction data

Interactable prop-
erties
Visual highlight
flags
VR Physics ap-
proximation

Collision data
User inputs
User orientation

#6 Order, level, and AI direction Order statuses
Customer statuses

Entity submission
events
Delta time elapsed

6.2 PLAYER CONTROLLER

The player controller subsystem is responsible for the player’s position and orientation in the world
space, as well as movement.

Figure 6: The Player Controller Subsystem.

6.2.1 ASSUMPTIONS

Takes in information that the Unity Engine obtains from the API layer that is correctly calibrated.

oVRworked - Fall 2019 page 11 of 16



6.2.2 RESPONSIBILITIES

The Player Controller is responsible for syncing the player’s movement and interaction with objects with
the state of the objects within the Unity Engine. This includes where the player is in the world, what
the player’s hands are interacting with, and making sure that the player isn’t interacting with objects in
ways they are not supposed to such as clipping through walls.

6.2.3 PLAYER CONTROLLER INTERFACES

Table 5: Player controller interfaces

ID Description Inputs Outputs

#3 Player orientation data in world User real orienta-
tion data

Info for SVRIS
User game orien-
tation

6.3 ENTITY DIRECTOR

Figure 7: The Entity Director Subsystem.

6.3.1 ASSUMPTIONS

There is enough processing power to handle entities in the game world seamlessly.

6.3.2 RESPONSIBILITIES

The Entity Director keeps track of every Unity gameobject that is instantiated (either by default or player
interaction) and it’s data values. For food objects, it must keep track of the food score of that object, if
that object is being cooked, and if that object is able to snap onto another object. Furthermore, it must
keep track whether or not the player is currently interacting with an object, or if object is interacting
with another object via collider boxes. Then, it will call necessary functions demanded by the entities.

oVRworked - Fall 2019 page 12 of 16



6.3.3 ENTITY DIRECTOR INTERFACES

Table 6: Entity director interfaces

ID Description Inputs Outputs

#4 Updating of world entites
Delta time elapsed
Manipulation by
SVRIS

Entity properties
after update

6.4 STEAMVR INTERACTION SYSTEM

The SteamVR Interaction System (SRVIS) handles much of the virtual reality based interactions. With-
out it, the game would still work in a 3D physical sense, but this system allows for our hands to become
manipulators of the VR world.

Figure 8: The SteamVR Interaction Subsystem.

6.4.1 ASSUMPTIONS

The information communicated by the Unity Engine about the player’s orientation is correct.

6.4.2 RESPONSIBILITIES

The SVRIS handles item highlighting, interaction through being picked up, pressed, manipulated, or
stacked by the player’s input. It tells the Unity engine how to process items, whether to render a highlight
indicating something can be picked up, and whether something may be interacted with by a player
controller. Collisions with hands and interactable objects prompts a highlight render trigger, which is
passed up to the engine to take care of for the object. Hands that are accompanined with user trigger
pulling will hold the objects, passing up physics to move the object along with the player’s hands.

oVRworked - Fall 2019 page 13 of 16



6.4.3 SVRIS INTERFACES

Table 7: SVRIS interfaces

ID Description Inputs Outputs

#5 VR Interaction data
Collision data
User inputs
User orientation

Interactable prop-
erties
Visual highlight
flags
VR Physics ap-
proximation

6.5 GAMEPLAY DIRECTOR

The gameplay director handles actual gameplay objective elements, not necessarily the entire element
of gameplay.

Figure 9: The Gameplay Director Subsystem.

6.5.1 ASSUMPTIONS

The entity director can communicate order submissions to the engine correctly for the gameplay director
to process.

6.5.2 RESPONSIBILITIES

The Gameplay Director is responsible for pushing the player through the cycle of receiving the order,
showing the player what the order is, giving feedback to the player on how pleased the AI is with their
service, and keeping track of making sure what the player is doing gets back to the Unity Engine to
update what the engine is sending out for the player to do. It generates new orders based on elapsed
time and previous completion of orders, and will update the status of orders and customers to the engine
to process.

oVRworked - Fall 2019 page 14 of 16



6.5.3 GAMEPLAY DIRECTOR INTERFACES

Table 8: Gameplay director interfaces

ID Description Inputs Outputs

#6 Order, level, and AI direction
Entity submission
events
Delta time elapsed

Order statuses
Customer statuses

oVRworked - Fall 2019 page 15 of 16



REFERENCES

oVRworked - Fall 2019 page 16 of 16


