
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

THE UNIVERSITY OF TEXAS AT ARLINGTON

ARCHITECTURAL DESIGN SPECIFICATION

CSE 4316: SENIOR DESIGN II
SPRING 2020

logo.png

THE BUDGETEERS

BUDGETING APP

ANIL KARKI

ROBERT KEMP

EMILY KNOWLES

MICHAEL OMORDIA

ROSHAN SHRESTHA

The Budgeteers - Spring 2020 page 1 of 17

REVISION HISTORY

Revision Date Author(s) Description
0.1 11.11.2019 AK, BK, EK, HO,

RS
document creation

0.2 12.11.2019 AK, BK, EK, HO,
RS

document revision version 2.0

The Budgeteers - Spring 2020 page 2 of 17

CONTENTS

1 Introduction 5

2 System Overview 6
2.1 User Layer Description . 6
2.2 Controller Layer Description . 6
2.3 API Layer Description . 6
2.4 Database Layer Description . 6

3 Subsystem Definitions & Data Flow 7

4 User Layer Subsystems 8
4.1 REGISTRATION . 8
4.2 LOG IN . 9
4.3 FEATURES . 11

5 Controller Layer Subsystems 13
5.1 App interface . 13

6 API/Server Layer Subsystems 14
6.1 Plaid API . 14
6.2 Django API . 15

7 Database Layer Subsystems 16
7.1 Django Database . 16

The Budgeteers - Spring 2020 page 3 of 17

LIST OF FIGURES

1 Budgeting app system overview . 6
2 A simple data flow diagram . 7
3 Registration subsystem overview . 8
4 Log in subsystem overview . 9
5 feature subsystem overview . 11
6 feature subsystem overview . 13
7 Backend section . 14
8 Plaid subsystem overview . 15
9 Django subsystem overview . 16
10 Database subsystem overview . 17

LIST OF TABLES

2 Subsystem interfaces . 9
3 Subsystem interfaces . 10
4 Subsystem interfaces . 12
5 Subsystem interfaces . 13
6 Subsystem interfaces Plaid . 15
7 Subsystem interfaces . 17

The Budgeteers - Spring 2020 page 4 of 17

1 INTRODUCTION

The budgeting app will allow its users to monitor and analyze their spending habits in order to help
them budget their money. The application itself will be a web app (possible a desktop application as
well) that will allow a user to link a bank account. Once linked, the application will display transactions
that the user makes using that bank account. This information will be used to help the user construct
and maintain a budget. Multiple budgeting schemes will be available for the user to choose from, and
they will be able to modify these schemes to their exact purposes.

Some key requirements of the application follow. The application must be secure. User accounts
must be accessible only after user authentication. The user must be able to link a bank account via
the Plaid banking API. The app should have multiple budgeting styles for the user to choose from. The
application must be able to display a list of the user’s recent transactions from Plaid. Using this data,
the app should generate charts and visuals as well as make predictions and generate suggestions about
the user’s budgeting habits (whether or not they have met their goals), and other suggestions (such as
perhaps where they could cut back to save money).

The Budgeteers - Spring 2020 page 5 of 17

2 SYSTEM OVERVIEW

Budgeting app consists of four layers: user layer, controller layer, api/server layer and database layer.
The user layer interacts with user and collects information of user’s preferences and send it to controller
layer where it is processed and send to api/server layer. Api/server make requests to data base layer
and obtained the information which is then sent back to controller layer.

Figure 1: Budgeting app system overview

2.1 USER LAYER DESCRIPTION

The features of the client-side application include a login view, a home page view, and a settings view
(encompassing various activities like mapping transaction names to buckets, determining budgeting
style, etc.). This layer communicates with back end server and database via controller layer.

2.2 CONTROLLER LAYER DESCRIPTION

This layer will communicate with the Application server, via HTTP requests (GET, POST, etc.). Basically,
it acts like the middle man between server and client.

2.3 API LAYER DESCRIPTION

The application server/API provides three main services to the client-side application: serving the actual
web page that the client views, maintaining state of client applications through persistent database stor-
age, and communicating directly with the Plaid API. All communications between the client application
and the application server will take place in HTTP messages. JSON will be the form of encoding used
to transmit data and state information, both between the client and app server, and the app server and
the Plaid API.

2.4 DATABASE LAYER DESCRIPTION

The database layer will provide persistent and secure storage of all entities of the application. This
includes user credentials, transactions, and user preferences.

The Budgeteers - Spring 2020 page 6 of 17

3 SUBSYSTEM DEFINITIONS & DATA FLOW

Overall system is divided into four layers. User layer is further divided into three subsystem: registra-
tion, login and features. Controller layer has only one subsystem: app interface. Api layer has two
subsystems: Django api and Plaid api and the database layer has only one subsystem: Django database.
At first, user will use personal information to register, the user credentials will be passed django database
subsystem with the help of app interface and django api subsystems. After registering, user can use user
id and password to login the account. When user make request for login, controller layer’s subsystem
will made request to api/server layer which verify information with django database and return mes-
sage of denial or acceptance to the controller layer.It will let user to add multiple bank account and get
access to have benefits of multiple features. While adding bank account, django api subsystem sends
and received data to and from plaid api, and stores in django database. Features subsystems will have
various categories inside it. When user want to select the certain feature, controller layer made request
to database layer and get back information with the help of api layer. This information will be passed
to user layer which in turn shows to user as gui.

Figure 2: A simple data flow diagram

The Budgeteers - Spring 2020 page 7 of 17

4 USER LAYER SUBSYSTEMS

4.1 REGISTRATION

Registration being the First subsystem for User Layer; this is the primary step toward involving with
the application. The user creates a new account by providing his/her credentials, which gets stored
into system database. With the user being registered in the database, he/she can access the application
features by logging in.

Figure 3: Registration subsystem overview

4.1.1 ASSUMPTIONS

We assume that the user has an email and required credentials to create an account to move on to
accessing the features of the application.

4.1.2 RESPONSIBILITIES

The registration subsystem is responsible for creating a user account and adding it to the database which
is linked to login subsystem and api interface for further step.

The Budgeteers - Spring 2020 page 8 of 17

4.1.3 SUBSYSTEM INTERFACES

Table 2: Subsystem interfaces

ID Description Inputs Outputs

#1 The Registration subsystem interacts
with the other subsystems providing
the user credentials to register into
the system database.

user name, email,
password

registered or de-
nied

4.2 LOG IN

Login being the Second subsystem for User Layer; is one of the steps towards being involved in the appli-
cation. This subsystem asks user for their credentials to verify that the user exists in the system database.
This system will be available in the home page along with the option to register an account.When the
system verifies that the account exists, the user will be able to access application features.

Figure 4: Log in subsystem overview

The Budgeteers - Spring 2020 page 9 of 17

4.2.1 ASSUMPTIONS

We assume that the user has a registered account in the system database to login and access personal
dashboard and application features.

4.2.2 RESPONSIBILITIES

The log in subsystem is responsible for allowing user to access the personal dashboard and account
information. It is linked with providing application features to the user and API interface to check if the
user exists in the database.

4.2.3 SUBSYSTEM INTERFACES

Table 3: Subsystem interfaces

ID Description Inputs Outputs
#1 The Login subsystem interacts with

the Feature subsystem to provide the
login credentials from the user to ac-
cess the features.

user id, password access or denial

The Budgeteers - Spring 2020 page 10 of 17

4.3 FEATURES

Features of the application is another subsystem for User Layer that interacts with the API interface of
the control layer to provide the dashboard or the page requested by the user up front.There is a two
way interaction between the Feature subsystem of the User Layer and the app Interface of the Controller
Layer.

Figure 5: feature subsystem overview

4.3.1 ASSUMPTIONS

We assume that the user has provided personal information to set up a dashboard with statistics and is
able to get hold of the features of the application.

4.3.2 RESPONSIBILITIES

The feature subsystem is responsible for providing logged in user with application features with person-
alized dashboard that has a two way interaction with the API interface.

The Budgeteers - Spring 2020 page 11 of 17

4.3.3 SUBSYSTEM INTERFACES

Table 4: Subsystem interfaces

ID Description Inputs Outputs

#1 The Features subsystem interacts with
the app interface to provide the sys-
tem with login credentials form the
user and get the user dashboard and
statistics

data from django
database via app
interface

display features on
gui

The Budgeteers - Spring 2020 page 12 of 17

5 CONTROLLER LAYER SUBSYSTEMS

The main function of the controller layer is to act as a middle man between user layer and the api/server
layer. Every request made by user layer must go through the controller layer to get data from database
or any other web pages. It only consists of one subsystem called app interface subsystem.

5.1 APP INTERFACE

This subsystem will get the data from user and pass to server side and vice-versa.

Figure 6: feature subsystem overview

5.1.1 ASSUMPTIONS

Following are the assumptions for this subsystem:

• User has successfully registered for the account.

• User has added at least one bank account.

• User is trying to interact with different features.

5.1.2 RESPONSIBILITIES

Each of the responsibilities/features/functions/services of the subsystem as identified in the architec-
tural summary must be expanded to more detailed responsibilities. These responsibilities form the basis
for the identification of the finer-grained responsibilities of the layer’s internal subsystems. Clearly de-
scribe what each subsystem does.

5.1.3 SUBSYSTEM INTERFACES

Each of the inputs and outputs for the subsystem are defined here. Create a table with an entry for each
labelled interface that connects to this subsystem. For each entry, describe any incoming and outgoing
data elements will pass through this interface.

Table 5: Subsystem interfaces

ID Description Inputs Outputs

#xx Description of the interface/bus
input 1
input 2

output 1

#xx Description of the interface/bus N/A output 1

The Budgeteers - Spring 2020 page 13 of 17

6 API/SERVER LAYER SUBSYSTEMS

An application program interface (API) is a set of routines, protocols, and tools for building software ap-
plications. It specifies how software components should interact. It is meant to simplify communication
protocol between a client and a server. The API layer connects the Controller layer and the Database
layer

Figure 7: Backend section

6.1 PLAID API

The Plaid API allows developers to integrate transaction and account data from most major financial
institutions into third party applications. The data includes merchant names, street addresses, geo-
coordinates, categories, and other info. It focuses on using this data to interact with their bank accounts,
check balances, and make payments.

6.1.1 ASSUMPTIONS

We assume that the user has a bank account already. We assume that they have money in the account.

6.1.2 RESPONSIBILITIES

Plaid enables third party applications to verify users’ bank accounts in a way that doesn’t share sensitive
financial data

6.1.3 SUBSYSTEM INTERFACES

Each of the inputs and outputs for the subsystem are defined here. Create a table with an entry for each
labelled interface that connects to this subsystem. For each entry, describe any incoming and outgoing
data elements will pass through this interface.

The Budgeteers - Spring 2020 page 14 of 17

Figure 8: Plaid subsystem overview

Table 6: Subsystem interfaces Plaid

ID Description Inputs Outputs

#1 Transaction name Chicken Fried Rice
Boba

Food

#xx Cost Cost 1 Total cost

6.2 DJANGO API

Django is a web framework designed to help you build complex web applications simply and quickly. It
will also help in communicating with the database.

6.2.1 ASSUMPTIONS

We assume the user provides us with correct data for our database.

6.2.2 RESPONSIBILITIES

HTTP response handling, content type negotiation using HTTP Accept headers.
subsubsectionSubsystem Interfaces

The Budgeteers - Spring 2020 page 15 of 17

Figure 9: Django subsystem overview

7 DATABASE LAYER SUBSYSTEMS

A database is used to store data. The database layer will provide persistent and secure storage of all
entities of the application. The database layer will communicate with the API layer.

7.1 DJANGO DATABASE

The Django Database receives requests from the API layer and stores or retrieves user credentials, plaid
tokens, user settings, and other data.

7.1.1 ASSUMPTIONS

We assume the Django API is properly configured to send valid requests to the database.

7.1.2 RESPONSIBILITIES

The responsibilities of the Database Layer are persistent and secure data storage of the application’s
entities.

7.1.3 SUBSYSTEM INTERFACES

The database layer has two main types of interfaces: storage and retrieval.

The Budgeteers - Spring 2020 page 16 of 17

Figure 10: Database subsystem overview

Table 7: Subsystem interfaces

ID Description Inputs Outputs
#01 Storage Request User Data N/A
#02 Retrieval Request N/A User Data

The Budgeteers - Spring 2020 page 17 of 17

