
2019 UTA College of Engineering Innovation Day April 15, 2019

Alex Waumann, Sunil Niroula, Juan Barragan, Luis Gonzalez

Nebuloo – Project Falcon

Vision Core Features

Mission

Should every ground-based anti-aircraft weapon be

operated by a human? We certainly don’t think so.

Why have a human (assisted by technology) shoot

down an enemy aircraft when we can automate that

process? An autonomous process can make decisions

faster, shoot with higher accuracy, and improve at

superhuman speeds. With enough information, it can

also shoot more accurately, differentiate between

enemies and allies to ensure that only the enemy is hit,

and make more informed decisions as it receives

data from multiple sources. Should these systems be

solely trained in physical environments? Simply

put, no. It is expensive and many scenarios will not be

accounted for due to time constraints and

possibly financial constraints. Hyper-realistic simulated

training environments are a proven solution

that can make the process of training AI-driven

operators significantly cheaper and lead to more robust

systems due to the larger test-scenario domain and the

increased speed at which each scenario can be

simulated.

While a sophisticated system would be ideal, we will be

building a less sophisticated version of an

autonomous anti-aircraft system. It will be able to

identify when a plane is flying near it, track it, and

shoot it down. While tracking it, our system will be

deciding whether or not it should shoot down the

plane and when it should fire the missile. The seeker

missile itself will use this information to know

which target to track and destroy. Since this system will

be AI-driven, it will need to be trained. To do

this cheaply and quickly, we will design a high

performance vulkan-based rendering engine. It will be

designed to specifically support the features we need to

make the simulated training environment as

realistic as possible. This will allow the learning in

simulation to transfer well into the physical world

and since more scenarios can be tested with a larger

scenario domain, the system will also be more robust.

The overall conceptual design offers the end user with a desktop application that can be

used to generate simulated 3D environments that can be used to train AI models in.

* Controller will use renderer to create models and set their transformations.

* The controller uses the dedicated input system to process input and take action based

on that action.

* Rendering engine will provide an image that the controller can take and hand off to

AI system.

* The AI system will specify the bounding box coordinates that the rendering engine

should draw.

* The controller will hand off the rectangle coordinates to the rendering engine

* The rendering engine will draw the rectangle.

Feature # Feature

1 Simulation engine will be able to import
3D models in glTF format.

6 Controller layer should handle user
input and map to certain actions.

2 Be able to create simulated
environments using existing 3D models.

7 Controller layer will allow the user
move around the simulated
environment.

3 AI Agent layer should be able to detect
specific objects in the environment.

8 Simulation engine should be able to
render scenes at a constant 60fps.

4 AI Agent layer should be able to track
detected objects in the environment.

9 Simulation engine + AI agent should run

together at 24 fps at the very least.

5 Simulated environment can be used to
train AI models.

10 AI Agent Layer + Controller layer should

work together to track moving objects in a

scene.

System Architecture Diagram

Design Details

References

Current Status

The simulation engine layer will feed the AI agent layer a frame buffer It will also feed

the controller layer information about the state of the simulation and settings that the

user may have set that should influence the move evaluation. The AI agent will give the

simulation engine a modified frame buffer since it will act as a filter that add bounding

boxes and label to objects that it recognizes. It will also send its move suggestion to the

controller layer. The controller layer will only send data to the simulation engine layer

to alter the state of the simulation.

As of demo day, the simulation engine has met a lot of the planned features, however,

the engine is nowhere near completion as the task proved to be more technically

challenging than originally anticipated. The controller layer is mostly there, handling

the user input to be received by the simulation engine. The AI agent/layer works

individually, but we ran out of time to integrate it with the rest of the system. The AI

agent/layer is able to detect and track basic objects, however, the pipeline to connect

the controller to this layer proved to be quite time consuming and more complex than

originally thought.

1. Kronos Vulkan Documentation, https://www.khronos.org/registry/vulkan/specs/1.1/styleguide.html

2. Vulkan Tutorial, https://vulkan-tutorial.com/Introduction

3. Real-time Object Detection with YOLO, YOLOv2 and now YOLOv3, by Jonathan Hui,

https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088

4. YOLO: Real-Time Object Detection, https://pjreddie.com/darknet/yolo/

CSE Senior Design

https://www.khronos.org/registry/vulkan/specs/1.1/styleguide.html
https://vulkan-tutorial.com/Introduction
https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://pjreddie.com/darknet/yolo/

