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Vision Core Features

Mission

Should every ground-based anti-aircraft weapon be 

operated by a human? We certainly don’t think so.

Why have a human (assisted by technology) shoot 

down an enemy aircraft when we can automate that

process? An autonomous process can make decisions 

faster, shoot with higher accuracy, and improve at

superhuman speeds. With enough information, it can 

also shoot more accurately, differentiate between

enemies and allies to ensure that only the enemy is hit, 

and make more informed decisions as it receives

data from multiple sources. Should these systems be 

solely trained in physical environments? Simply

put, no. It is expensive and many scenarios will not be 

accounted for due to time constraints and

possibly financial constraints. Hyper-realistic simulated 

training environments are a proven solution

that can make the process of training AI-driven 

operators significantly cheaper and lead to more robust 

systems due to the larger test-scenario domain and the 

increased speed at which each scenario can be 

simulated.

While a sophisticated system would be ideal, we will be 

building a less sophisticated version of an

autonomous anti-aircraft system. It will be able to 

identify when a plane is flying near it, track it, and

shoot it down. While tracking it, our system will be 

deciding whether or not it should shoot down the

plane and when it should fire the missile. The seeker 

missile itself will use this information to know

which target to track and destroy. Since this system will 

be AI-driven, it will need to be trained. To do

this cheaply and quickly, we will design a high 

performance vulkan-based rendering engine. It will be

designed to specifically support the features we need to 

make the simulated training environment as

realistic as possible. This will allow the learning in 

simulation to transfer well into the physical world

and since more scenarios can be tested with a larger 

scenario domain, the system will also be more robust.

The overall conceptual design offers the end user with a desktop application that can be 

used to generate simulated 3D environments that can be used to train AI models in.

* Controller will use renderer to create models and set their transformations.

* The controller uses the dedicated input system to process input and take action based 

on that action.

* Rendering engine will provide an image that the controller can take and hand off to 

AI system.

* The AI system will specify the bounding box coordinates that the rendering engine 

should draw.

* The controller will hand off the rectangle coordinates to the rendering engine

* The rendering engine will draw the rectangle.

# Feature # Feature

1 Simulation engine will be able to import 
3D models in glTF format.

6 Controller layer should handle user 
input and map to certain actions.

2 Be able to create simulated 
environments using existing 3D models. 

7 Controller layer will allow the user 
move around the simulated 
environment.

3 AI Agent layer should be able to detect 
specific objects in the environment.

8 Simulation engine should be able to 
render scenes at a constant 60fps.

4 AI Agent layer should be able to track 
detected objects in the environment.

9 Simulation engine + AI agent should run 

together at 24 fps at the very least.

5 Simulated environment can be used to 
train AI models.

10 AI Agent Layer + Controller layer should 

work together to track moving objects in a 

scene.
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The simulation engine layer will feed the AI agent layer a frame buffer  It will also feed 

the controller layer information about the state of the simulation and settings that the 

user may have set that should influence the move evaluation. The AI agent will give the 

simulation engine a modified frame buffer since it will act as a filter that add bounding 

boxes and label to objects that it recognizes.  It will also send its move suggestion to the 

controller layer.  The controller layer will only send data to the simulation engine layer 

to alter the state of the simulation.

As of demo day, the simulation engine has met a lot of the planned features, however, 

the engine is nowhere near completion as the task proved to be more technically 

challenging than originally anticipated. The controller layer is mostly there, handling 

the user input to be received by the simulation engine. The AI agent/layer works 

individually, but we ran out of time to integrate it with the rest of the system. The AI 

agent/layer is able to detect and track basic objects, however, the pipeline to connect 

the controller to this layer proved to be quite time consuming and more complex than 

originally thought.

1. Kronos Vulkan Documentation, https://www.khronos.org/registry/vulkan/specs/1.1/styleguide.html

2. Vulkan Tutorial, https://vulkan-tutorial.com/Introduction

3. Real-time Object Detection with YOLO, YOLOv2 and now YOLOv3, by Jonathan Hui, 

https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088

4. YOLO: Real-Time Object Detection, https://pjreddie.com/darknet/yolo/

CSE Senior Design

https://www.khronos.org/registry/vulkan/specs/1.1/styleguide.html
https://vulkan-tutorial.com/Introduction
https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088
https://pjreddie.com/darknet/yolo/

