Spring 2012

DateTopicHomeworkTurn inDue date
Tuesday 1/17Properties of Z and Z/nZp.4 # 5, 6; p.8 # 6, 11; p.11 # 9  
Thursday 1/19Introduction to groups: Definitions and Examples.
Dihedral groups.
Study the proof of Proposition 2 (p.20)
 
HW # 1:
§ 1.1  #  6, 11, 20, 24, 25, 31
§ 1.2   # 1
 
1/26
Tuesday 1/24Symmetric groups.
Quaternion group.
Homomorphisms and isomorphisms
§ 1.3  # 3, 4, 6, 7, 18, 19
§ 1.5  # 1
§ 1.6 # 3, 4, 18, 20, 22
HW # 2
§1.3  # 10, 13, 15
§1.6 # 1, 2, 17, 26
2/2
Thursday 1/26Subgroups. Group actions. Normalizers and centralizers.§1.7  # 11, 13, 16, 17, 18, 19
§2.1 # 3, 6, 9, 10a, 12
§2.2  # 5, 6, 11
  
Tuesday 1/31Cyclic groups
Generators
Lattices of subgroups
 
§ 2.3 # 1, 2, 3, 10, 11
§ 2.4 # 5, 6
§ 2.5 # 9 a, b
  
Thursday 2/2Cosets. Normality. HW # 3
§ 3.1 # 1, 36, 42
§ 3.2 # 4, 8, 12, 18
2/9
Tuesday 2/7Quotient groups.
The isomorphism Theorems
  

 
 
Thursday 2/9Simple groups Alternating groupsShow that if G is a simple group, then any homomorphic image of G is either isomorphic to G or of order one.HW # 4
§ 3.3 # 3
§ 3.4 # 1
§ 3.5 # 3, 4
2/16
Tuesday 2/14Group actions. Cayley’s theorem§ 4.2 # 1, 2, 14  
Thursday 2/16The class equation HW # 5 
Handout
2/28
Tuesday 2/21The Sylow Theorems   
Thursday 2/23Review   
Tuesday 2/28Test # 1
 
  
Thursday 3/1Direct product.Show a group of order 36 is not simple.
(Submit answer by email by Monday 3/5 at 12 noon.)
HW # 6 
Handout on Sylow Theorems
3/8
Tuesday 3/6Finitely generated abelian groups.pp. 156-15 7# 1, 18 a-c
pp.165-166 # 1 a, b; 2 a-c; 3 a-c; 4
  
Thursday 3/8Solvable groupsProblem # 8 on page 198.
Handout  on Solvable groups.
pp. 173-174 # 1, 2, 4, 7, 10
For the solutions to Problem 3 on Test 1 click here.
For a proof of the propositions presented in class click here.
HW # 7 
Handout on Solvable groups
3/22
March 12-16, 2012    SPRING BREAK
Tuesday 3/20Introduction to Rings § 7.1 # 1, 2, 3, 4, 7, 9, 11, 15  
Thursday 3/22Ring homomorphisms.
Ideals
§ 7.3 # 16, 18, 22, 24a, 27, 28
 
HW # 8
§ 7.1 #   11, 15
§ 7.3 #  22,  27, 28
 
3/29
Tuesday 3/27Maximal ideals.
Principal ideals
§ 7.4 # 4, 5, 6, 8, 10, 19  
Thursday 3/29 
Principal Ideal Domains (PID)

§ 8.2
 
HW # 9
§ 7.4 # 4, 5, 6,  10, 19
4/10
Tuesday 4/3Polynomial Rings over Fields§ 9.1
§ 9.2
§ 9.4
  
Thursday 4/5Review   
Tuesday 4/10Test # 2   
Thursday 4/12Introduction to Modules§ 10.1  
Tuesday 4/17Presentations HW # 10
§10.1 # 3, 5, 6, 8
§10.2 # 1, 3, 8, 9
5/2
Thursday 4/19Module Homomorphisms.
Quotient modules
§ 10.2  
Tuesday 4/24Generation of Modules.
F[x]-modules
§ 10.3HW # 11
§10.1 # 19
§10.3 # 4, 9, 11
5/3
Thursday 4/26Direct product of modules.
Cyclic modules
§ 10.3For the module problems from previous  prelims click here. 
Tuesday 5/1Simple modules§ 10.3  
Thursday 5/3Review   
Tuesday 5/8
11 a.m. -1:30 p.m.
Final Exam