Dr. Cordero

Topic: Number Theoretic Functions

  1. Definitions:
    • Given a positive integer n, let  denote the number of positive divisors on n and  denote the sum of these divisors.
    • For any arbitrary real number x, we denote by [x] the largest integer less than or equal to x; that is, [x] is the unique integer satisfying x-1 <[x] < x.
  2. Compute  for each given n:
    •   n=75
    •  n=99
    •  n=243
    • n=1024
  3. What do you think  is, given that p and q are distinct primes?
    What do you think  is, given that p and q are distinct primes?
    What is ?
    What is ?
  4. Study Theorem 6.1 Formula to obtain all the positive divisors of an integer n
                    Theorem  6.2  Formulas for  and 
                     Theorem 6.3   If gcd(a, b)=1, then  and  
  5. Practice:
    • Find  by means of the formula given in Theorem 6.2:
      1. n=75
      2. n=900
      3. n=6961
      4. n=17,640
    • Page 109 # 5a
    • Page 109 # 7a: Prove that  is an odd integer if and only if n is a perfect square.
  6. An application to the calendar: Read § 6.4. Then do Problems # 1, 2, 3, 5, 6.