Math 1302 Practice Midterm 3 Fall 2011
Dr. Cordero
NAME

1. Solve the equation $\log _{5}(x+2)-\log _{5}(x-1)=2$.
2. Solve $5^{2-x}=9^{x}$.
3. Suppose $\$ 3000$ is invested at an interest rate k compounded continuously and grows to $\$ 7000$ in 10 years. Find the interest rate rounded to two decimal places.
4. If a and b are different solutions of
$\left.\log _{(} x^{2}+6 x+9\right)=0$, compute $a b$.
5. Solve the equation $3=a \cdot 2^{3 x}$ for x.
6. Find all x that satisfy: $\log _{5}\left(\log x^{3}\right)=1$.
7. The population in a certain country was 40 million in 1989 with an exponential growth rate of 3.1 \% per year. Assuming that this data continues to apply, predict, to the nearest million, what was the population of that country in 2000 .
8. Suppose that $\$ 5,000$ is invested at an interest rate of 4.5% per year, compounded continuously. How long will it take for the invested amount to triple?
9. Solve: $\ln (x+1)-\ln (x)=\ln 5$.
10. Solve the system of equations and find the sum of the x and y values in the solution.

$$
\begin{array}{llr}
2 x+5 y & = & 3 \\
3 x-y & = & -2
\end{array}
$$

11. How many solutions does the following system has?
12. Mr. Algebra buys 4 movie tickets and 2 popcorns for $\$ 48$. Right behind him, Cindy Likesmath buys 5 tickets and 3 popcorns for \$64. How much are the movie tickets?
13. Find the x-coordinate of the solution to the system:

$$
\begin{aligned}
& 2 x+3 y=3 \\
& 4 x+2 y=-8
\end{aligned}
$$

14. Almonds, which cost $\$ 6$ per pound, are to be mixed with peanuts, which cost $\$ 4$ per pound, to make a 16 -pound bag of a blend that sells for $\$ 5.25$ per pound. How many pounds of peanuts should be used?
15. Solve the system of equations and find the sum of the x, y, and z values in the solution.

$$
\begin{array}{rlr}
2 x+y+z & =2 \\
y-2 z & =3 \\
y+z & =-1
\end{array}
$$

16. Find the inverse of the matrix: $\left[\begin{array}{ll}1 & 4 \\ 2 & 5\end{array}\right]$
17. Let $A=\left[\begin{array}{cc}2 & -4 \\ 3 & 2\end{array}\right]$ and let $B=\left[\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right]$. Find $A B+B A$.
18. Let $A=\left[\begin{array}{cc}1 & -4 \\ -1 & 2\end{array}\right] \quad B=\left[\begin{array}{cc}1 & 1 \\ 2 & -6\end{array}\right]$ $C=\left[\begin{array}{ll}1 & 1 \\ 3 & 4 \\ 1 & 6\end{array}\right] \quad D=\left[\begin{array}{cccc}1 & -3 & 4 & -5 \\ 1 & -2 & 7 & -3 \\ 1 & 1 & -1 & 1 \\ -1 & 1 & -6 & 1\end{array}\right]$ $E=\left[\begin{array}{l}0 \\ 2 \\ 1 \\ 6\end{array}\right]$
Which operations are defined?
a) $A+B$
b) $D E$
c) $B C$
d) $C A$
e) $C B$
19. Using the matrices in problem 18, compute $A-B$.
20. Using the matrices in problem 18,
compute $(A-B) B$.
21. How many solutions does the following system has?

$$
\begin{array}{rlr}
1 x-3 y+5 z & = & 7 \\
5 x-65 y+20 z & = & 30 \\
-4 x+26 y-10 z & = & -14
\end{array}
$$

22. For the given matrices A and B, which of the following are false?
$A=\left[\begin{array}{cc}1 & -4 \\ -1 & 2\end{array}\right] \quad B=\left[\begin{array}{cc}1 & 3 \\ 1 & -6\end{array}\right]$
a) $A B$ is a square matrix
b) $A-B$ is a square matrix
c) A^{-1} exists
d) B^{-1} exists
e) $A-B=B-A$
23. Sheila invested $\$ 15,000$ into three accounts paying $3 \%, 4 \%$, and 6% interest, respectively. After one year her interest from the 3 accounts was $\$ 1150$. She invested $\$ 1,000$ more into the account paying 4% than in the account paying 3%. Find the amount of money she invested in each account.
24. Which of the following are acceptable row operations in the Gauss-Jordan method
a) Interchange any two rows
(b) Multiply all of the elements in one row by 0
(c) Add a nonzero multiple of one row to another row.
(d) Divide all the elements in one row by a nonzero constant
(e) All of the above are allowed
25. What is the augmented matrix for the system?
$2 x+y=3$
$3 y+2 x=-8$
