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[1] An adjoint method is applied to a three-dimensional global ocean biogeochemical
cycle model to optimize the ecosystem parameters on the basis of SeaWiFS surface
chlorophyll observation. We showed with identical twin experiments that the model
simulated chlorophyll concentration is sensitive to perturbation of phytoplankton and
zooplankton exudation, herbivore egestion as fecal pellets, zooplankton grazing, and the
assimilation efficiency parameters. The assimilation of SeaWiFS chlorophyll data
significantly improved the prediction of chlorophyll concentration, especially in the
high-latitude regions. Experiments that considered regional variations of parameters
yielded a high seasonal variance of ecosystem parameters in the high latitudes, but a low
variance in the tropical regions. These experiments indicate that the adjoint model is,
despite the many uncertainties, generally capable to optimize sensitive parameters and
carbon fluxes in the euphotic zone. The best fit regional parameters predict a global net
primary production of 36 Pg C yr�1, which lies within the range suggested by Antoine et
al. (1996). Additional constraints of nutrient data from the World Ocean Atlas showed
further reduction in the model-data misfit and that assimilation with extensive data
sets is necessary.
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1. Introduction

[2] To address the long-term global climate concerns
about the rising of the atmospheric CO2 concentration, it
is essential to understand and quantify the framework of the
ocean carbon dynamics by evaluating the contributions of
different processes simulated in a carbon cycle model. The
complex marine ecosystem processes play an important role
in controlling the sources and sinks of the ocean carbon
budget in the euphotic layer. One way to estimate the
sources and sinks of the carbon budget is to use marine
ecosystem models, which, depending on their application,
have different levels of complexity [see, e.g., Hofmann and
Friedrichs, 2002]. However, all ecosystem models contain
parameters (e.g., the remineralization rate of fecal pellets or
mortality rate of zooplankton) that are poorly constrained
and thus need to be explored with sensitivity studies and
observational evidence.
[3] Data assimilation techniques, such as the adjoint

method (also called variational data assimilation), have
recently been used to efficiently estimate the best fit values
for marine ecosystem model parameters [Lawson et al.,

1996; Fennel et al., 2001; Losa et al., 2004; Spitz et al.,
2001; Friedrichs, 2002; Schartau et al., 2001]. The adjoint
method calculates the gradient of model-data misfit with
respect to the control variables and uses the gradient
information to vary the parameters toward reduced model-
data misfit. Past studies have focused on a box model or a
specific region of the world ocean. This study will attempt
to apply the adjoint data assimilation technique to optimize
the global and regional ecosystem parameters of a compre-
hensive global three-dimensional ocean carbon cycle model
and will be complimentary to previous regional studies such
as those by Losa et al. [2004], Hemmings et al. [2004], or
Friedrichs [2002]. The first two papers indicate that eco-
system parameters in the North Atlantic region cannot be
assumed invariant by using data assimilation experiments.
For the Equatorial Pacific, Friedrichs [2002] explored how
the assimilation of biological data into an ecosystem model
can be used to distinguish between physical and ecological
regime shifts and thus may identify shortcomings in the
model formulation. Such findings have been confirmed by,
for example, Garcia-Gorriz et al. [2003] who showed that
the assimilation of Sea-viewing Wide Field-of-view Sensor
(SeaWiFS) data of the Adriatic Sea into a NPZ/primitive
equations model produces better fits to plankton bloom
than to nonbloom conditions. Natvik and Evensen [2003]
examined the sensitivity of the dynamical error of the
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ecosystem model to the actual model state using the
Ensemble Kalman Filter and SeaWiFS observations.
[4] In this study, an adjoint global three-dimensional

carbon cycle model has been developed and applied to
explore how globally uniform and regionally varying eco-
system parameters influence the optimization, and how
assimilation of data from different seasons influence the
solution. The response of the chlorophyll concentration and
carbon fluxes with respect to selected ecosystem parameters
will be quantitatively assessed as well. The objective of this
study is to (1) test the applicability of the adjoint method in
optimizing three-dimensional ecosystem parameters and
reducing the model-data misfit, (2) analyze the performance
of the optimization when SeaWiFS and WOA observation
are assimilated, and to (3) discuss the uncertainties and
limitation associated with the assimilation method adopted
(e.g., in respect to the cost function formulation and multiple
minima). In the following section, the ocean biogeochemical
model used in this study is briefly described. Section 3
explains the satellite and in situ observations applied in the
assimilation, followed by a description of the implementa-
tion of the inverse method in section 4. Results of the data
assimilation experiments conducted in this study are pre-
sented in section 5. Section 6 provides an overall summary
and discussion, and the paper concludes in section 7.

2. Model Description

[5] The ocean model used in this study is an ocean
general circulation model coupled with a carbon cycle
model. The model adopts the 72 � 72 E grid [Arakawa
and Lamb, 1977] (approximately 3.5� � 3.5� horizontal
resolution), and contains 22 vertical layers with realistic
bathymetry. The ocean general circulation model is the
Hamburg Large-Scale Geostrophic (LSG) model [Maier-
Reimer and Hasselmann, 1987; Maier-Reimer et al., 1993]
and the carbon cycle model is the Hamburg Ocean Model of
the Carbon Cycle (HAMOCC5.1) [Maier-Reimer, 1993; Six
and Maier-Reimer, 1996; Aumont et al., 2003]. The LSG

model has been part of the Ocean-Carbon-Cycle Model
Intercomparison Project (OCMIP) [Orr et al., 2001] and
includes improved parameterizations of the mixed-layer and
eddy-induced tracer transport [Gent et al., 1995; Visbeck et
al., 1997] (see Mikolajewicz et al. [2006] for details). In a
first order and with these revisions, the errors by short-
comings of the physical approximations are far lower than
those of the biogeochemical formulations.
[6] A three-dimensional carbon cycle model (HAMOCC5.1)

is coupled online to the LSG. The carbon cycle model includes
36 tracers and a nutrient, phytoplankton, zooplankton, and
detritus NPZD-type ecosystem model (Figure 1). The initial
condition of the HAMOCC5.1 model is based on a model
used by Howard et al. [2006], which has been integrated for
10,000 years on an NEC supercomputer at the German
Climate Modeling Center (DKRZ) in Hamburg. Detailed
description of the HAMOCC5.1 used in this study is given
by Howard et al. [2006] and in auxiliary Text S11.

3. Observations

[7] Five-year seasonal climatology of SeaWiFS Level 3
chlorophyll data [Gregg and Casey, 2004], provided by
NASA’s Ocean Color Research Team (Goddard Earth Sciences
Distributed Active Archive Center, http://oceancolor.
gsfc.nasa.gov) are used for data assimilation in this study.
To capture the seasonal pattern of the global ocean chloro-
phyll patterns, the weekly data from January 1998 through
December 2003 are averaged for the four seasons, which
are winter (January to March; JFM), spring (April to June;
AMJ), summer (July to September; JAS), and fall (October
to December; OND) and interpolated to the model grid
(Figure 2). The coastal observations are excluded owing to
the coarse resolution of the model and because of the
different algorithms used by the satellite to measure open-
ocean and coastal chlorophyll (case 1 and case 2 water)
[Gordon and Morel, 1983]. We note that uncertainties of
remote sensing chlorophyll data can be as high as �30%
[McClain et al., 1998; O’Reilly et al., 2000; Gregg and
Casey, 2004]. In addition to the remotely sensed chlorophyll
data, we also use the seasonal in situ surface nitrate data
provided by the WOA. The data is integrated between 0 and
50 meter depths to be assimilated into the model’s topmost
layer.

4. Inverse Method

4.1. Adjoint Method

[8] The adjoint model allows us to systematically esti-
mate the sensitivity of the gradient of the cost function (i.e.,
calculates the model-data misfit) with respect to perturba-
tion of the ecosystem parameter sets under the assumption
that the model’s functions are differentiable. Moreover, the
adjoint model is very efficient (i.e., only a single forward
and backward integration is needed) in finding the leading
sensitivity of the model output with respect to multiple or
large sets of parameters [Errico, 1997]. The adjoint model

Figure 1. Schematic diagram of main processes simulated
in the ecosystem model. Carbon fluxes between boxes are
given in Pg C yr�1 (simulated value using optimized
parameterization from regional assimilation experiment,
RANC, RATC, and RASC, are given in parentheses, and
values outside the parentheses represent values prior to the
assimilation).

1Auxiliary materials are available at ftp://ftp.agu.org/apend/gb/
2006GB002745.
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can be developed with adjoint of the forward model code as
shown, for example, by Talagrand [1991]. Here the adjoint
codes have been generated by the TAMC (Tangent linear
and Adjoint Model Compiler) [Giering and Kaminski,
1998] (www.fastopt.com) and improved manually to be
computationally efficient. The accuracy of the adjoint code
has been tested using a finite difference (Taylor Series)
approximation (see auxiliary Figure S7). A Quasi-Newton

descending algorithm M1QN3 by Gilbert and Lemaréchal
[1989] is applied to minimize the cost function.
[9] The main idea behind the parameter optimization

consists of four steps (Figure 3a). First, the forward model
is integrated using a predefined set of control parameters.
Secondly, the cost function computes the model-data dif-
ference. In the third step, the adjoint model determines the
gradient of the cost function with respect to the control
parameters. Finally, a descent algorithm is applied to the
gradient of the cost function to compute a new set of control
parameters that will return a reduced cost function. This
routine is iterated until the cost function is sufficiently small
or until the maximum number of iterations is reached. The
result of the iterative process is an optimized set of control
parameters with a minimized cost function. In practice, the
shape of the cost function is very difficult to estimate, and
owing to the nonlinearity of the model, it is very likely that
multiple minima will exist [Schartau et al., 2001]. Conse-

Figure 2. Averaged seasonal SeaWiFS chlorophyll data
(in mg Chl-a m�3) for the months of (a) JFM, (b) AMJ,
(c) JAS, and (d) OND. Isolines are at 0.05, 0.1, 0.15, 0.2,
0.25, 0.3, 0.5, 0.7, 0.9, 1.1, and 1.3.

Figure 3. (a) Schematic flow diagram of the adjoint
method parameter optimization and (b) schematic forward
and backward integration for each season.
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quently, it is important to note that not all of the minima
reached in this study are the global minimum.

4.2. Control Variables and Cost Function

[10] The control vector ~p consists of the ten ecosystem
control variables Pi (Table 1), which are selected on the
basis of previous sensitivity tests (see auxiliary Figure S1).
Since values of these control variables Pi range over several
orders of magnitude, their values are scaled to Pi0 = [Pi (new
guess)]/[Pi (first guess)] [e.g., Giering, 1989; Friedrichs,
2001] to avoid precision problems with the data assimilative
model. The scaled control variables Pi0 of the control vector
~p0 are therefore all nondimensional with equal orders of
magnitude. In general, the cost function measures the
quadratic misfit between simulated surface chlorophyll,
mi,j(~p0), and the observations, xi,j:

J ~p0ð Þ ¼
Si;jWi;j xi;j � mi;j ~p0ð Þ

� �2
si;j

2
: ð1Þ

The subscripts i and j represent the grid location in the x and y
directions. Here s represents the scale factor and the weight
term of each grid point, Wi,j, is calculated on the basis of the
volume (Vi,j) of each model grid cell,

Wi;j ¼
Vi;j

Si;jVi;j
; ð2Þ

where the equatorial (polar) regions have the largest
(smallest) weight for the cost function. This is because
equatorial model grids represent a larger surface area than the
higher-latitude model grids. We note that the cost function
only calculates the tracer misfit in the surface (i.e., top layer in
the model).
[11] One of the many uncertainties associated with the

adjoint method is the formulation of the cost function (i.e., the
selection of the scale factor s and weight term in the cost
function may significantly alter the final solution). Various
choices of s have been used in the past, but there was no
specific study investigating the implication of the different
value chosen for s [Evans, 2003;Oschlies, 2006]. In order to
choose the most efficient cost function, a set of a priori
identical twin experiments (see section 5.1 for identical twin
experiment description) has been conducted to analyze the
role of scale factor andweight term in the cost function. Three
different values of si,j are tested using similar minimization

technique. The scale factor in the first experiment is set to be a
uniform constant of averaged model chlorophyll variance

si;j ¼ 0:2 mg Chl� a m�3 : ð3Þ

In the second experiment,si,j is set to be spatial variance as a
function of observation

si;j ¼ 0:3*xi;j: ð4Þ

In the third experiment, the scale factor is set to be spatial
model variance at every grid point

si;j ¼ var xi;j
� �

: ð5Þ

All of the assimilations are conducted with the same initial
condition and the identical twin experiments are run for the
JFM months. Finally, a universal cost function (will be
referred to assess function) is used at the end to measure the
performance of all assimilation. The assess function is
defined as

A ~p0ð Þ ¼
Si;j xi;j � mi;j ~p0ð Þ

� �2
0:3*xi;j
� �2 : ð6Þ

The assess function is formulated on the basis of 30%
observation error limit associated with SeaWiFS chlorophyll.
To analyze the role of the weight term, three additional,
similar experiments are conducted in which the weight term
in the cost function are set to one.
[12] Table 2 describes and summarizes the results of the

six experiments together with the a priori and a posteriori
value for both the cost and assess functions. The role of the
weight term is obvious. When the weight term is neglected,
the high-latitude regions do slightly better than if the weight
term is included. The opposite is true for the tropical regions
(see auxiliary Figure S2). The best reduction in the assess
function is returned by experiment EXP_COSTA, where the
scale factor is set to be constant and the weight term is
included. The lowest performance returned by experiment
EXP_COSTC, where spatial model variance is used.
Furthermore, more control parameters are recovered when
a constant scale factor is adopted (see auxiliary Table S1).
These experiments show that for the given model and
assimilation method, an inclusion of regional weight term
and a constant value for the scale factor in the cost function

Table 1. Descriptions of the Selected Control Parameters Used in the Assimilation

Pi Symbol Description Value Units

P1 lo POC remineralization rate 0.0033 d�1

P2 gZ DOC excretion by ZOO 0.06 d�1

P3 dp PHY mortality rate 0.008 d�1

P4 gP DOC excretion by PHY 0.06 d�1

P5 (1 � eher) herbivore egestion as fecal pellets (1 � 0.8) -
P6 gO ZOO grazing rate 0.5 d�1

P7 zinges assimilation efficiency 0.5 -
P8 dz ZOO mortality rate 0.008 d�1

P9 (1 � ecan) carnivore egestion as fecal pellets (1 � 0.95) -
P10 do DOC maximum remineralization 0.005 d�1

GB1001 TJIPUTRA ET AL.: ECOSYSTEM PARAMETER OPTIMIZATION

4 of 13

GB1001



is more likely to return the maximum reduction in the cost
function.

5. Experiment Design and Results

[13] Five classes of data assimilation experiments have
been carried out with the LSG-HAMOCC5.1 model to
improve the seasonal chlorophyll forecast (see Table 3).
Each class of experiments consists of four experiments

(12 experiments for regional assimilation, see section 5.4),
one for each season. For each of those experiments, the
corresponding seasonal (JFM, AMJ, JAS, and OND) cli-
matological data are assimilated into the model. All experi-
ments have been initialized with the same initial condition
(December climatology) and control variables have only
been altered for the season in which data has been assim-
ilated into the model. For example, for the OND assimila-
tion, the control parameters use fixed reference values for

Table 2. Comparison of A Priori and A Posteriori Values for Both Cost and Assess Functions Based on Different Scale Factor and

Weight Term in the Adopted Cost Function

Exp sI,j JO JT (JT/JO) AO AT (AT/AO)

Exp_CostA 0.2 1.550e � 1 1.453e � 2 0.0938 1.034e + 4 1.974e + 3 0.1909
Exp_CostB 0.3*xi,j 2.554e + 0 6.027e � 1 0.2360 1.034e + 4 2.345e + 3 0.2268
Exp_CostC var(xi,j) 2.567e + 5 7.778e + 4 0.3030 1.034e + 4 5.956e + 3 0.5760
Exp_CostA_NW 0.2 7.354e + 2 6.494e + 1 0.0883 1.034e + 4 2.096e + 3 0.2027
Exp_CostB_NW 0.3*xi,j 1.034e + 4 2.550e + 3 0.2467 1.034e + 4 2.550e + 3 0.2466
Exp_CostC_NW var(xi,j) 1.562e + 9 2.732e + 8 0.1748 1.034e + 4 5.085e + 3 0.4918

Table 3. Experiment Description, Setups, and Cost Function Reduction for Each Experimenta

Experiments Data

Optimized Parameters

Cost Function ReductionMonths Regions

REF - - - -
ITE_JFM Synthetic Chl-a (noise) JFM global 92%
ITE_AMJ Synthetic Chl-a (noise) AMJ global 66%
ITE_JAS Synthetic Chl-a (noise) JAS global 36%
ITE_OND Synthetic Chl-a (noise) OND global 63%
ITEN_JFM Synthetic Chl-a (no noise) JFM global 94%
ITEN_AMJ Synthetic Chl-a (no noise) AMJ global 95%
ITEN_JAS Synthetic Chl-a (no noise) JAS global 82%
ITEN_OND Synthetic Chl-a (no noise) OND global 97%
GAC_JFM SeaWiFS Chl-a JFM global 1%
GAC_AMJ SeaWiFS Chl-a AMJ global 12%
GAC_JAS SeaWiFS Chl-a JAS global 16%
GAC_OND SeaWiFS Chl-a OND global 18%
GACN_JFM SeaWiFS Chl-a and NO3 JFM global 9%
GACN_AMJ SeaWiFS Chl-a and NO3 AMJ global 12%
GACN_JAS SeaWiFS Chl-a and NO3 JAS global 17%
GACN_OND SeaWiFS Chl-a and NO3 OND global 17%
RANC_JFM SeaWiFS Chl-a JFM north 17%
RANC_AMJ SeaWiFS Chl-a AMJ north 20%
RANC_JAS SeaWiFS Chl-a JAS north 54%
RANC_OND SeaWiFS Chl-a OND north 43%
RATC_JFM SeaWiFS Chl-a JFM tropic 3%
RATC_AMJ SeaWiFS Chl-a AMJ tropic 1%
RATC_JAS SeaWiFS Chl-a JAS tropic 12%
RATC_OND SeaWiFS Chl-a OND tropic 8%
RASC_JFM SeaWiFS Chl-a JFM south 9%
RASC_AMJ SeaWiFS Chl-a AMJ south 28%
RASC_JAS SeaWiFS Chl-a JAS south 3%
RASC_OND SeaWiFS Chl-a OND south 38%
RANCG_JFM SeaWiFS Chl-a JFM north 17%
RANCG_AMJ SeaWiFS Chl-a AMJ north 20%
RANCG_JAS SeaWiFS Chl-a JAS north 14%
RANCG_OND SeaWiFS Chl-a OND north 1%
RATCG_JFM SeaWiFS Chl-a JFM tropic 7%
RATCG_AMJ SeaWiFS Chl-a AMJ tropic 1%
RATCG_JAS SeaWiFS Chl-a JAS tropic 22%
RATCG_OND SeaWiFS Chl-a OND tropic 8%
RASCG_JFM SeaWiFS Chl-a JFM south 8%
RASCG_AMJ SeaWiFS Chl-a AMJ south 29%
RASCG_JAS SeaWiFS Chl-a JAS south 18%
RASCG_OND SeaWiFS Chl-a OND south 44%

aThe northern, tropical, and southern regions are defined as 90�N–22�N, 22�N–22�S, and 22�S–90�S, respectively.
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January to September and are only varied (optimized) for
the fall season (OND) (see Figure 3b). The seasonal
chlorophyll concentration produced by the model using
the first guess parameter (reference) vector ~p0 is shown in
Figure 4.
[14] The first class of experiments is aimed at estimating

the sensitivity of the simulated chlorophyll concentration to
changes in ecosystem parameters by conducting identical

twin experiments (ITE). In the second class of experiments
(GAC), SeaWiFS seasonal climatological chlorophyll data
are assimilated into the adjoint model to optimize the
parameter vector ~p0 for the global ocean. In the third class
of experiments (GACN), nitrate data from the WOA is
included as an additional constraint in the assimilation. In
the fourth class of experiments (RAC), the global ocean is
divided into three regions: northern (90�N–22�N), tropical
(22�N–22�S), and southern (22�S–90�S) regions. This
class of experiments is divided into three subclasses of
experiments, a subclass for each region (i.e., there are
12 separate assimilations for RAC). For each region and
season, SeaWiFS chlorophyll data is assimilated into the
three-dimensional model in order to analyze the sensitivity
of simulated chlorophyll in different regions and seasons.
The performance of each experiment is summarized in
Table 3. To investigate the sensitivity of the phytoplankton
growth parameters, a fifth class of experiment is added,
which is similar to the fourth class experiment, but include a
variation of the temperature-dependent phytoplankton
growth parameters.

5.1. Class of Identical Twin Experiments (ITE)

[15] The ITE is applied to test the robustness of the
adjoint method [Friedrichs, 2001]. In the ITE, a model
reference run (REF) has been carried out for each season
using a reference parameter set. The outputs of the simu-
lated chlorophyll concentration from these simulations have
been perturbed by Gaussian noise to generate the synthetic
data, which are used for data assimilation. The Gaussian
noise has been generated for each location by a Gaussian
random function multiplied by 30% of the local simulated
chlorophyll concentration. The magnitude of the Gaussian
noise is comparable to the uncertainty of the SeaWiFS data
(section 3). As an initial condition for the data assimilation,
the parameters Pi0 in ~p0 have been perturbed by a factor of
0.9 of their initial value without noise. Thus a good
recovery of the parameter after assimilation of the synthetic
data would yield the parameter’s value similar to the
reference run (which are the unperturbed parameters).
[16] Experiments with noise (i.e., ITE_JFM, ITE_AMJ,

ITE_JAS, and ITE_OND) demonstrated that the model
simulated chlorophyll concentration is significantly sensi-
tive with respect to five (P2, P4, P5, P6, and P7) of the ten
parameters. Some of these parameters were able to recover
close to their initial values. The cost function was signifi-
cantly reduced, for example by 92% in the JFM experiment.
To analyze the spatial distribution of model-data misfit, we
introduce relative cost function term

ji;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi;j � mi;j ~pð Þ
� �2

0:3 � xi;j
� �2

vuut : ð7Þ

The relative cost function gives the model-data chlorophyll
misfit at each grid point and divides it by 30% of the data
value, which is the approximation accuracy of the SeaWiFS
observation. The a priori and a posteriori relative cost
function plot for the ITE_JFM experiments are shown in
Figure 5, which shows significant global reduction in

Figure 4. Model simulated ‘‘first guess’’ (reference run)
seasonal surface chlorophyll concentration (in mg Chl-a
m�3) for the months of (a) JFM, (b) AMJ, (c) JAS, and
(d) OND. Isolines are at 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5,
0.7, 0.9, 1.1, and 1.3.
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relative cost function, thus the performance of the identical
twin experiments demonstrates that the applicability of the
adjoint method is sufficient as a means to reduce model-data
misfit.
[17] To test whether the noise is the reason for the non-

recovered optima parameters, we conducted an additional
ITE experiment set where no noise is added (ITEN_JFM,
ITEN_AMJ, ITEN_JAS, and ITEN_OND). The ITE experi-
ments without noise yield better reduction in the cost
function over all seasons (see Table 3 and Figure 6) than
experiments with noise. Despite the significant reduction in
model-data misfit, some parameters remain unable to
recover their initial value (see auxiliary Table S1), which
is likely related to the nonlinearity of the problem and thus
resulted in multiple minima in the cost function. The
condition number of the Hessian matrix (as approximated
by the M1QN3), which is the ratio of the smallest to the
largest eigenvalues of a symmetric positive Hessian matrix,
is close to unity (1.0269). This indicates that the cost
function is steep-shaped and the minimizations converge
quickly [Thacker, 1989], on average about 5 iterations for
all ITE experiments. We note that the estimate of the
Hessian matrix of M1QN3 has substantial uncertainties
related to the approximation in a nonlinear system.

5.2. Class of Global Assimilation of SeaWiFS
Chlorophyll Experiment (GAC)

[18] In this class of experiments, climatological SeaWiFS
chlorophyll observations are assimilated into the LSG-
HAMOCC5.1 for each season. The ecosystem parameters
are optimized for a set of globally uniform values. Optimal

model solutions resulting from the experiment GAC showed
very small reductions in the cost function: 1%, 12%, 16%,
and 18% for JFM, AMJ, JAS, and OND months, respec-
tively. Most of this reduction occurred in the high latitudes,
which is related to the large a priori model-data bias in high
latitudes [Tjiputra, 2004]. The optimal solution indicates a
seasonal variability of the chlorophyll concentration, which
is high in the Southern Ocean during OND, and in the North
Pacific and North Atlantic during JAS. A higher concen-
tration of chlorophyll is produced in the northern Atlantic
and Pacific for AMJ and JAS in the optimized model runs.
Small improvement occurred in the Southern Ocean. The
model-data bias in the Equatorial Indian and Atlantic were
reduced, but significant differences remain in the Equatorial
Pacific region.
[19] In the JFM months’ assimilation, significant model-

data bias remained, with a nearly identical a priori and a
posteriori model-data misfit. The condition number of the
Hessian matrix for the GAC_JFM assimilation of 2.25367 is
larger than that of the ITE experiment, implying a flatter
cost function and slower convergence of the cost function
(after 25 iterations). This low reduction in the cost function
may be related to the differences between the model and
data of nitrate concentrations in the high-latitudes regions.
For example, the model underestimates the nitrate concen-
trations in the Southern Ocean during the JFM season. In
the OND assimilation, the a priori model-data discrepancies
are mostly concentrated in the high latitudes and the
assimilation reduced this misfit especially in the Southern
Ocean significantly. However, at the same time, it increased
the misfit at tropical and northern high latitudes (see

Figure 5. (a) A priori and (b) a posteriori relative cost
function plot of the ITE_JFM identical twin experiment
with noise added to the artificial data. Isolines are at 1, 2, 3,
4, 5, 6, and 7.

Figure 6. (a) A priori and (b) a posteriori relative cost
function of the ITEN_JFM experiment where no noise was
added. Isolines are at 0.1, 0.2, 0.4, 0.8, 1.6, and 3.2.
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Figure 7). This occurred mainly because of the model a
priori overestimates of the chlorophyll concentration in the
Southern Ocean. The optimized parameter sets reduced the
overall phytoplankton mass by increasing the phytoplankton
exudation rate from 0.06 to 0.08 and grazing rate from 0.5
to 0.6 per day. These outcomes suggest that different
parameterizations may be needed for different regions
(latitudes). All of the seasonal SeaWiFS assimilations,
excluding the OND, proposed having a lower herbivore
egestion rate (P5), zooplankton grazing rate (P6), and
assimilation efficiency (P7).

5.3. Class of Global Assimilation of SeaWiFS
Chlorophyll and WOA Nitrate Experiment (GACN)

[20] In this experiment, the seasonal nitrate data from the
World Ocean Atlas were included in the assimilation as an
additional constraint on the cost function. Hence the
updated cost function becomes

J ~pð Þ ¼ JCHL þ JN

¼
Si;jWi;j xi;j � mi;j ~pð Þ

� �2
schl

2
þ
Si;jWi;j yi;j � ni;j ~pð Þ

� �2
sNO3

2
; ð8Þ

where yi,j and ni,j(~p) represent observation and model-
generated nitrate concentrations, respectively, and sNO3
represents the uniform standard deviation of nitrate
(4.0 mmol N L�1). In this experiment, the global
observations of nitrate and chlorophyll are assimilated
together to reduce the model-data bias of both nitrate and
chlorophyll concentrations.

[21] Overall, the assimilation performance of GACN is
slightly better than GAC (see Table 3). The total cost
function value (JTOT = JCHL + JN) for the GACN_JFM
assimilation is reduced by 9% after only six iterations.
Both JCHL and JN are also reduced by 9%. Experiment

Figure 7. (a) A priori and (b) a posteriori cost function
plots of the GAC_OND assimilation divided by 30% of the
observational value. Isolines are at 1, 2, 3, 5, 8, 11, and 15.

Figure 8. Model simulation of chlorophyll (inmgChl-am�3)
using optimized parameters from regional assimilations
of (a) RAC_JFM, (b) RAC_AMJ, (c) RAC_JAS, and
(d) RAC_OND. Isolines are at 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.5, 0.7, 0.9, 1.1, and 1.3.
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GAC_JFM did not reach the minimum in the cost function,
and the additional nitrate data improved the data assimila-
tion performance. Similarly, there were improvements from
experiment GAC for the GACN_AMJ and GACN_JAS
assimilations. The additional constraint of nitrate did not
improve the model-data bias in the Southern Ocean, which
could be related to the low chlorophyll concentration in the
model, especially during JAS. For the GACN_OND assim-
ilation, the additional nitrate data were able to reduce the
model-data bias of chlorophyll concentration in the South-
ern Ocean, and the cost function did not increase in the
tropics and northern regions, unlike in GAC_OND.

5.4. Class of Regional Assimilation of SeaWiFS
Chlorophyll Experiment (RAC)

[22] There is evidence of biogeographical provinces
[Longhurst, 1998] and previous modeling studies [Losa et
al., 2004; Sarmiento et al., 2004; Dunne et al., 2005; Hood
et al., 2006] have pointed out that different ocean regions
have different biogeochemical characteristics and thus dif-
ferent sets of parameters. In a first approach, we examined
the sensitivity of the simulated chlorophyll concentration to
spatial varying parameters by dividing the ocean into low-
and high-latitude regions: southern (>22�S), tropical
(22�N–22�S), and northern (>22�N) region. A total of
twelve experiments were performed (see Table 3), one for
each region and season. SeaWiFS data have been assimi-
lated only in these specific regions, but the ecosystem
parameters have been varied globally. The primary motiva-
tion of these experiments is to investigate the sensitivity of
the regional chlorophyll concentration to the ecosystem
parameters.
[23] The regional assimilations have an improved perfor-

mance in comparison to the previous experiments, yielding
overall reductions of the model-data misfit to 9%, 16%,
29%, and 35% for JFM, AMJ, JAS, and OND, respectively.
The a posteriori seasonal chlorophyll model simulation
using regionally and seasonally varying ecosystem param-
eters are shown in Figure 8. The a posteriori regional
ecosystem parameter values are shown in Table 4. The
most significant improvement took place in the summer
northern region in the RANC_JAS assimilation, where the

cost function was reduced by more than half (54%). This,
however, required a large reduction of the zooplankton
grazing rate (�0.1 d�1) and the assimilation efficiency
(0.05) parameter. It is possible that the relatively low
grazing rate produced in the RANC_JAS experiment is
due to the very high chlorophyll concentration observed
by SeaWiFS in the North Atlantic regions. Chester [2000]
claimed that these large phytoplankton blooms in the North
Atlantic region during the spring and early summer are
associated with the excess of production by phytoplankton
over the low consumption (zooplankton grazing) following
the development of a thermocline and increasingly favorable
light conditions. Another significant cost function reduction
in the northern region occurred in the RANC_OND assim-
ilation (43%), where the optimized parameter values were
able to replicate the high chlorophyll concentration
observed in the North Atlantic and North Pacific. In the
tropical regions, the cost function is reduced by an average
of only �6%. The only notable model improvement is
shown in the RATC_JAS simulation, with a 12% cost
function reduction, where the optimized parameter values
increase the chlorophyll concentration in the Equatorial
Indian and Equatorial Atlantic. This relatively low reduction
in the cost function may be due to the more linear physical
processes in the tropics (e.g., low seasonal variability in
temperature and light, and no sea ice formation) than in the
higher-latitude regions. In the southern region, the assimi-
lation of the SeaWiFS observations into the model for
RASC_OND improved the predictions substantially (38%
cost function reduction), but the model-data bias of chloro-
phyll concentration for RASC_JAS remains high (only 8%
cost function reduction), which is due the very low initial
chlorophyll concentration.
[24] Table 4 lists the variances of each of the control

variables with the highest variances for P2, P4, P5, P6, and
P7, which is consistent with the ITE simulations in
section 5.1. Optimal parameters in the tropical regions have
lower variances than parameters in the high-latitude regions,
implying that some parameters may be reformulated as a
function of light, temperature, or mixed-layer depth. Over-
all, the data assimilation significantly improved the chloro-
phyll predictions for the high latitudes. The only noticeable

Table 4. A Posteriori Ecosystem Parametersa

Experiments P10 P20 P30 P40 P50 P60 P70 P80 P90 P100

(A priori) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
RANC_JFM 1.000 1.065 0.981 0.787 0.910 0.888 0.924 1.012 1.000 1.028
RATC_JFM 1.007 1.064 0.997 0.936 0.954 0.928 0.904 1.015 1.005 1.062
RASC_JFM 1.000 1.027 1.000 0.988 0.970 0.975 0.976 1.005 1.000 1.003
RANC_AMJ 1.000 1.079 0.972 0.479 0.774 0.840 0.840 1.016 1.000 1.065
RATC_AMJ 1.000 1.001 1.000 0.999 0.999 0.999 0.998 1.000 1.000 1.000
RASC_AMJ 1.002 1.114 0.991 0.845 0.888 0.845 0.910 1.022 1.002 1.028
RANC_JAS 1.002 1.781 0.958 0.298 0.100 0.198 0.100 1.148 1.020 1.247
RATC_JAS 1.003 1.216 0.997 0.914 0.798 0.810 0.746 1.041 1.014 1.035
RASC_JAS 0.998 1.100 0.995 0.862 0.929 0.879 0.960 1.019 0.994 0.978
RANC_OND 1.000 1.304 0.968 0.847 0.918 0.774 0.772 1.053 1.030 1.022
RATC_OND 1.000 1.090 1.000 0.980 0.960 0.930 0.920 1.020 1.010 1.010
RASC_OND 0.999 0.821 1.102 0.942 1.110 1.526 1.538 0.964 0.996 0.792
Mean 1.001 1.139 0.997 0.823 0.859 0.883 0.883 1.026 1.006 1.022
Variance 0.000 0.054 0.001 0.047 0.065 0.085 0.101 0.002 0.000 0.010

aSee Table 1 for parameter descriptions. Values with mean and variance resulted from every regional assimilation experiments (RAC).
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improvements in the equatorial region occur in the RATC_JAS
assimilation (i.e., equatorial Indian, Atlantic, and eastern
Pacific Ocean). The largest improvements occur in the
Arctic and North Atlantic Ocean in the RANC_JAS assim-
ilation. The Southern Ocean was improved significantly in
the RASC_OND assimilation (see Figure 9).
[25] The annual carbon fluxes between main components

yielded by the marine ecosystem model are shown in
Figure 1. The a priori annual global net primary production
is 41 Pg C yr�1, which comprised of 10.6 Pg C yr�1 new
and 30.4 Pg C yr�1 regenerated production. The a posteriori
model run using the optimized ecosystem parameter set
from RAC experiments reduced the new and regenerated
production to 8.7 Pg C yr�1 and 27.3 Pg C yr�1, respec-
tively. The net primary production remains in the lower
limit of annual NPP value suggested by Antoine et al.
[1996] of 36 Pg C yr�1 (Figure 1), higher than Berger’s
[1989] value of 27 60 Pg C yr�1, but relatively lower than
that estimated by Falkowski et al. [1998] and Behrenfeld et
al. [2005] of �45–50 and 60 Pg C yr�1, respectively. The
assimilation increases the chlorophyll concentration in most
of the global regions, except for the Southern Ocean in the
OND months. Accordingly, the net primary production for
the JFM, AMJ, and JAS were increased by 1.7, 0.6, and
0.6 Pg C yr�1, respectively, but is reduced significantly by
8 Pg C yr�1 in the OND months. The a posteriori phyto-
plankton stock is relatively high because of the lower
grazing rate (by zooplankton) parameter, thus the annual
flux of carbon from phytoplankton to zooplankton compart-
ment in themodel were reduced by approximately 6 PgC yr�1.
In a steady state, the new primary production is equal to the
total export of organic material out of the euphotic zone.
The new set of ecosystem parameters reduces the export of
DOC out of the euphotic layer by nearly 2 Pg C yr�1, while
the export production of POC into the deep ocean is
maintained at �7 Pg C yr�1.

5.5. Class of Regional Assimilation of SeaWiFS
Chlorophyll Experiment With Added Growth
Parameters (RACG)

[26] To investigate the sensitivity of the simulated chlo-
rophyll concentration to changes in the phytoplankton
growth formulation, we varied parameters of the Eppley
[1972] formula (detail growth formulation is given in
auxiliary Text S1),

f Tð Þ ¼ a � bcT : ð9Þ

This formulation seems to be a logical starting point for
modeling phytoplankton growth since the maximum expected
growth rate varies with temperature, but different taxonomic
groups have different growth characteristics. Therefore, if
dominant groups change over time, the parameters in (9) may
be varied over space and time. Three growth-associated
parameters (maximum growth parameter a, growth rate at
0�C b, and temperature dependence of growth c) are varied
regionally and seasonally and these experiments are denoted
RACG.
[27] The results of the assimilations (auxiliary Table S3)

indicate that most of the experiments confirm the parameter

Figure 9. Difference plots between a priori and a poster-
iori cost function (ja priori � ja posteriori) of regional
assimilation experiments for the months of (a) JFM,
(b) AMJ, (c) JAS, and (d) OND (positive values represent
improvement of the model projection or reduction in model-
data difference, while zero or negative values represent no
improvement). Isolines are at �8, �4, �2, �0.5, 0, 0.5, 2,
4, 8, and 12.
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selection of Eppley [1972]. Five of the twelve experiments
yield an decrease of the a posteriori model-data bias, but
three of them yield an increase of the a posteriori model-
data bias compare to the RAC experiments (see auxiliary
Table S3 for list of optimized parameter values). Most of the
optimized parameters, which deviate noticeable from the
previous assimilation, are most likely because the minimi-
zation move toward different direction in the cost function.
For example, eight parameters of RANC_OND, which
produced a 43% reduction in the cost function, deviate
significantly from experiment RANCG_OND, which only
yielded a 7% reduction in the cost function. Table 3
summarizes the performance of all assimilation experi-
ments. This class of experiment shows that it is not obvious
whether adding more control parameters in the assimilation
would further reduce the cost function.
[28] To test the sensitivity model long-term integration

toward the control parameters, we run two 10-year forward
model integrations, one using the a priori, and one using the
optima control parameters. The chlorophyll concentrations
from the 10-year runs are seasonally averaged, and the
spatial model-data misfit for the JFM and JAS months are
plotted in supplemental Figure 4. The model-data misfit is
calculated using the relative cost function (equation (7)).
Essentially, the new parameters effectively eliminate most
of the model-data discrepancies in the northern and southern
regions. However, in the tropical regions, the a posteriori
model simulations perform poorly. We suspect this is due to
the sluggish western boundary formulation in our model.
This result further stresses the prospect of using regional
parameter optimization following biogeographical provin-
ces suggested by Longhurst [1998].

6. Summary and Discussions

[29] In this study, an adjoint three-dimensional marine
biogeochemical model was developed and tested using
identical twin experiments and by assimilating SeaWiFS
chlorophyll and WOA nitrate observations. The next two
subsections will discuss and evaluate the inverse method as
well as the physical/biogeochemical aspect of this study.

6.1. Evaluation of Inverse Method

[30] Several factors influence the performance of the
optimization, such as the selection of the scale factor, s,
in the cost function (see equation (1)). A selection of a
spatially varying scale factor did not significantly improve
the forecast as shown in Table 2. Also, changes in the
formulation of the weighting term in the cost function may
alter the results of the assimilation [Losa et al., 2004], but
this sensitivity is not confirmed by this study (see auxiliary
Figure S2).
[31] In the identical twin experiments, the sensitivities of

model output toward ecosystem parameters were investi-
gated. The adjoint model was able to identify five of the
selected ten parameters that are significantly more sensitive
than the others: phytoplankton and zooplankton DOC
exudation, herbivore egestion rate as fecal pellets, zooplank-
ton grazing, and assimilation efficiency. In general, the
identical twin experiments were able to recover, with a
substantially reduced cost function by up to 92%, the

sensitive perturbed parameters, but did not do as well with
the less sensitive ones. Assimilation of SeaWiFS chloro-
phyll data into the carbon cycle model significantly reduced
the cost function in the Southern Ocean for the Southern
Hemisphere spring (OND), but increased model-data bias
for tropical and the northern regions, so that the overall
optimization generated only a slight improvement in the
predictions. The consideration of nitrate data from WOA
reduced the model-data bias further, especially in the JFM
months where the cost function is reduced by 9%. This
outcome emphasizes the important role of variation of data
sets in parameter optimization experiments. Results from
the regional assimilation of SeaWiFS chlorophyll data
showed a substantial improvement in the reduction of the
model-data misfit in both the northern and southern mid-
to-high latitude regions. In some experiments, the inclusion
of growth parameters in the assimilation further reduces the
model-data misfit.
[32] This study suggests that the adjoint method is appli-

cable to a three-dimensional marine ecosystem model.
Several limitations are eminent from the adjoint approach.
For example, it is problematic to find a global minimum in a
nonlinear complex ecosystem model (for details see
auxiliary Text S2). Another example is the sensitivity of
inverse approach to the selection of control parameters.
Most of the parameters selected in this study are base on a
first guess sensitivity test, but future identical twin exper-
iment are necessary to analyze other important in the model
such as parameters associated with the air-sea gas exchange,
N2 fixation, iron fertilization, or particle flux parameteriza-
tion. Moreover, other formulation of the cost function may
improve the optimization (e.g., by adding a background
term in the cost function).

6.2. A Posteriori Model and Observation Evaluation

[33] The following section highlights limitations of the
model and the data as identified by significant model-data
bias in some regions. In general, the adjoint method is
feasible to reduce reasonably the overall model-data misfit,
but some of the observed chlorophyll features could not be
reproduced by the model. For example, the relatively high a
posteriori model-data bias remains in the North Pacific and
North Atlantic during the OND and JFM months, and in the
Southern Ocean for all months except OND. The simulated
chlorophyll concentrations remain relatively low in those
regions. The low zooplankton carbon budget from the RAC
experiments could imply that the a priori control parameters
in the model may overpredict the zooplankton grazing at
certain regions of the world ocean. The remaining a poste-
riori model-data bias can be categorized into uncertainties
associated with the physical and biogeochemical parameter-
izations, and uncertainties associated with the data sampling
and sampling strategies.
[34] First, the assimilation in this study assumes that the

LSG model is perfect. The German Ocean Model Intercom-
parison Project (OMIP) and the Ocean Carbon-Cycle Model
Intercomparison Project (OCMIP) pointed out some limi-
tations of the current model (http://www.awi-bremerhaven.
de/Modelling/GLOBAL/projects/omip/omip_report.pdf
[Orr et al., 2001]). While the physical model is generally
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able to reproduce the observed radiocarbon distribution in
the ocean (auxiliary Figure S3), limitation of the prediction
may be related to the coarse resolution of the ocean
circulation model and the assumptions made in the primitive
equations. These uncertainties may be associated with the
parameterization of deep water formation and in the diffu-
sion and eddy parameterization, which affect the distribu-
tion of the tracers in the ocean and biogeochemical
processes.
[35] Second, the model simulation includes uncertainties

related to the biogeochemical parameterizations such as
parameterization of air-sea carbon fluxes and autotrophic
carbon and N2 fixation process by phytoplankton [Hood et
al., 2006]. The fluxes of carbon within the euphotic zone
also critically depends on the multi-element growth limita-
tion factor [Aumont et al., 2003], plankton size and com-
munity structure [Doney et al., 2003]. Carbon fluxes
between the euphotic and deep ocean are sensitive to the
remineralization process and the parameterization of vertical
POC flux [Howard et al., 2006] as well as the ratio of
particle export to primary production [Dunne et al., 2005].
Schlitzer [2000] and Usbeck et al. [2003] applied the adjoint
method to optimize the export POC flux parameterization.
A future challenge would be to test the sensitivity of these
parameterizations and calibrate the model with these param-
eterizations to the observational evidence.
[36] Third, the model-data bias can also be contributed by

the data itself. The selection and frequencies of the data sets
introduced in the assimilation are very important in the
determining optimization performance [Lawson et al.,
1996]. The difficulty in replicating the observed chlorophyll
in the Southern Ocean may depend on the iron limitation
features; thus, the model error may be reduced when
additional spatially and temporally resolving iron data is
included in the assimilation. Unfortunately, iron observa-
tions are still extremely rare and limited. Testing the
assimilation using monthly data sets, instead of seasonal,
is on the way. Despite the fact that satellite data is
advantageous in providing better spatial and temporal
coverage than in situ data, significant inconsistencies
remains [O’Reilly et al., 2000] and these errors may not
necessarily follow a Gaussian distribution.

7. Conclusions

[37] The adjoint method was applied to a complex three-
dimensional LSG-HAMOCC5.1 to analyze the sensitivity
of the model-generated chlorophyll with respect to control
parameters and optimize them. Identical twin experiments
reveal a substantial reduction of the model-data misfit by
the adjoint approach. Many of the sensitive parameters
are associated with zooplankton dynamics, such as DOC
excretion rate of zooplankton, grazing rate, herbivores
egestion rate as fecal pellets, and assimilation efficiency
of zooplankton. This implies that zooplankton activities
play an important role in the euphotic ecosystem dynamics
[LeQuéré et al., 2005]. It also confirms previous study of
Smetacek [2001], which showed that the marine phyto-
plankton dynamics are sensitive to loss (i.e., grazing by
zooplankton) processes. Thus future measurements of eco-

system parameters associated with zooplankton dynamics
would be crucial for improving the understanding of current
ecosystem processes.
[38] When SeaWiFS chlorophyll observation was assim-

ilated into the adjoint model, the model-data misfit was
significantly reduced and the a posteriori run still produces
realistic carbon flux prediction. The most notable improve-
ment occurs in the high latitude, when the ecosystem
parameters are varied for different regions and seasons.
The a posteriori model simulation suggested that the model
considerably overestimate the NPP in the OND months, but
slightly underestimate the NPP in the other months. Future
investigations may consider a more detailed analysis of
coupled physical biogeochemical system associated with
these discrepancies.
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