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Evidence from stratigraphic sections of the Panthalassa, Paleo-Tethys and Neo-Tethys suggests that the
oceans experienced widespread anoxia during the Late Permian, which likely contributed to the extinction
of ~90% of marine and ~70% of terrestrial species. The Late Permian and Early Triassic were also characterized
by significant carbon isotope excursions implying that considerable perturbations in the carbon cycle oc-
curred. Bathymetric features of the Panthalassa during this period are not well known since most of the ocean
floor has been subducted; however, tectonic reconstructions suggest that active marine subduction zones sur-
rounded Pangea. Thus, it is reasonable to assume that there was an active mid-ocean ridge system located in
Panthalassa during the Late Permian. In this study, the impact of such a spreading center within Panthalassa
on the climate and carbon cycle is investigated using a comprehensive climate system model for the end-
Permian. This is a novel approach because a majority of previous simulations assumed a flat bottom for the
Panthalassa deep-sea. The mid-ocean ridge (MOR) simulation enhanced vertical mixing and topographic steer-
ing of the currents near the ridge-axis but in comparison with the simulation using a flat bottom, changes in the
global distribution of water masses and circulation in the Panthalassa were insignificant. Dissolved oxygen con-
centrations were not considerably affected by the implementation of the mid-ocean ridge. Thus the approxima-
tion of using a flat-bottom topography in ocean models for the Late Permian remains valid.
In a second sensitivity study, the effect of a sill between the deep Paleo-Tethys and Panthalassa on water mass
distribution and oxygen content has been investigated. Model results suggest that the introduction of a sill led
to enhanced stratification, as well as an increase in salinity and temperature in the Paleo-Tethys. An associated
reduction of the dissolved oxygen concentration to dysoxic to near-anoxic conditions below 1800 m suggests
that the changes in sill height between the Paleo-Tethys and Panthalassa may have been a contributing factor
of regional importance to the Permian-Triassic mass extinction.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Near the Permian–Triassic boundary (approximately 252 Ma), the
largest known mass extinction of the Phanerozoic occurred when
more than 90% of all marine species and 70% of the terrestrial species
became extinct (Erwin, 2006). Many hypotheses have been proposed
concerning the causes of this extinction but the exact triggering
mechanisms are still controversial. Outgassing from the Siberian
Traps undoubtedly produced dramatic global warming due to a
large influx of greenhouse gases into the atmosphere (Wignall,
2001; Reichow et al., 2009; Svensen et al., 2009), as inferred by
climate-sensitive sediments (Royer, 2006; Breecker et al., 2010).
One possible consequence of a CO2-induced global warming is the en-
hancement of ocean stratification that can lead to widespread anoxia
(Knoll et al., 1996; Meyer and Kump, 2008). While deep-sea anoxia
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has been inferred from pelagic sediments originating from the
Panthalassa Ocean (Isozaki, 1997), modeling and recent geochemical
studies suggest that the expansion of low-oxygen conditions occurred
within the oxygen minimum zone rather than at the seafloor
(Winguth and Maier-Reimer, 2005; Algeo et al., 2010; Winguth and
Winguth, 2012). Geochemical data support the existence of dysoxic
(~0.2–2 mL L−1 or ~5–45 μmol L−1; Tyson and Pearson, 1991;
Wignall et al., 2010) to anoxic (b0.2 mL L−1 or b5 μmol L−1) water
masses in the Tethys Ocean near the Permian–Triassic boundary
(Newton et al., 2004; Grice et al., 2005; Cao et al., 2009).

A majority of modeling studies attempting to simulate oceanic con-
ditions during the Late Permian have used uncoupled ocean general cir-
culation models (OGCMs) (Hotinski et al., 2001; Zhang et al., 2001) or
an energy balance model coupled with an OGCM (Winguth et al.,
2002) in which forcings of temperature, freshwater and momentum
fluxes are prescribed. Kiehl and Shields (2005) performed a fully
coupled climate simulation that considered feedbacks between the dif-
ferent components of the climate system and more recently, Winguth
and Winguth (2012) completed fully coupled climate–carbon cycle
imate to bathymetric features and implications for the mass extinc-
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Table 1
Boundary conditions for the Late Permian simulations. Table adapted from Kiehl and
Shields (2005); ppmv is parts per million by volume.

CO2

(ppmv)
CH4

(ppmv)
N2O
(ppmv)

S0
(Wm−2)

Eccentricity Obliquity

Value 3550 0.700 0.275 1338 0 23.5°
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simulations with and without an enhanced biological pump. However,
these previous simulations featured a flat ocean bottom configuration
with at least a partially open deep-water connection in the Tethys re-
gion. In order to fully determine the possible extent of anoxic conditions
around the Permian–Triassic boundary, the paleobathymetric influ-
ences should be considered. For example, mid-ocean ridges can block
deep-water currents as well as cause kinematic steering of flow about
the ridge (Gille et al., 2004; Katsman, 2005; Thurnherr et al., 2011).
Blockage of deep ocean basins may cause dense bottom waters to be
redirected into downstream basins leading to stratification (Thurnherr
et al., 2011). Isolation of basins bymid-ocean ridges, sills and/or shallow
seas may restrict ventilation; however, enhanced mixing also occurs
due to obstacles, particularly with the flow over rough topography
(St. Laurent and Garrett, 2002; Jayne et al., 2003). Montenegro et al.
(2011) inferred from climate simulations using an earth system
model of intermediate complexity (EMIC) for the Permian–Triassic
boundary with mid-ocean ridge bathymetries, that the meridional
overturning circulation does not change significantly under consider-
ation of a mid-ocean ridge. In this paper, the impacts of different bathy-
metric features (mid-ocean ridge in Panthalassa and sills between the
Tethys and Panthalassa) on water mass distribution, ocean circulation,
and oxygen distribution are explored with a more complex, fully
coupled climate system model including a marine carbon cycle, in
order to asses how environmental changes could have contributed to
the mass extinction at the Permian-Triassic boundary.

2. Model description

2.1. Community Climate System Model (CCSM3)

TheNational Center for Atmospheric Research's Community Climate
System Model 3 (CCSM3; Collins et al., 2006) was applied for the Late
Permian sensitivity experiments described here (see Kiehl and
Shields, 2005; Winguth and Winguth, 2012). The CCSM3 is a fully
coupledmodel containing the fourmain components of the climate sys-
tem (atmosphere, land, ocean, and sea-ice). Fluxes, boundary condi-
tions, and physical state information are exchanged between the
different components by a coupler (see Collins et al., 2006, and http://
www.cesm.ucar.edu/models for more detailed information). For the at-
mospheric component, the Community Atmosphere Model version 3
(CAM3) was used with the spectral horizontal resolution grid T31
(3.75°×3.75°) with 26 vertical levels (Collins et al., 2004, 2006). The
drift within the global mean temperature at 4000 m is adjusting to the
equilibrium and considered to be small (less than 0.01 °C per century
and comparable to the modern control simulation of Yeager et al.,
2006). The Community LandModel version 3 (CLM3.0) has a resolution
of 2°×2° (Oleson et al., 2004). CLM3.0 provides surface albedos, upward
longwave radiation, sensible heatflux, latent heatflux,water vaporflux,
as well as zonal and meridional surface stresses to the atmospheric
model (Oleson et al., 2004). The ocean component consisted of the
Parallel Ocean Program version 1.4 (POP), a general circulation model,
in which three-dimensional primitive equations for ocean dynamics
and a dipole grid with a nominal horizontal resolution of 3° and 25 ver-
tical levels are used (Smith and Gent, 2004; Collins et al., 2006). The
ocean module includes ideal age as a passive tracer used to measure
the time (years) since a parcel of water has been transported away
from the surface (England, 1995; Bryan et al., 2006; Kiehl, 2007). For
the sea-ice component, a thermodynamic model, the Community Sea
Ice Model version 5 (CSIM5; Briegleb et al., 2004; Collins et al., 2006)
was used with the same horizontal and vertical resolution as in the
ocean general circulation model.

2.2. Ocean carbon cycle

The CCSM3 in this version includes a carbon cycle model as de-
scribed in Doney et al. (2006) and Winguth and Winguth (2012),
Please cite this article as: Osen, A.K., et al., Sensitivity of Late Permian cl
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which is based upon the Ocean Carbon Model Intercomparison
Project (OCMIP-2) biotic carbon model of Najjar and Orr (1999;
http://www.ipsl.jussieu.fr/OCMIP). Air–sea fluxes of CO2 and oxygen
were estimated using the wind-dependent gas exchange coefficient
across the air-sea interface, along with partial pressures of CO2 in
the lower two layers of the atmosphere and the top layer of the
ocean (Doney et al., 2006). The solubility of CO2 and oxygen is
temperature-dependent. The model includes five prognostic variables:
inorganic phosphate, semilabile organic phosphorous, dissolved oxy-
gen, dissolved inorganic carbon, and alkalinity (Doney et al., 2006;
Najjar et al., 2007). The parameterization of biological uptake of nutri-
ents assumes a constant Redfield ratio for particulate organic matter
(Maier-Reimer, 1993). The uptake of PO4 is given by the turnover of bio-
mass, modulated by surface solar irradiance, and temperature, with
phosphate and iron as the limiting nutrients within the model. Phos-
phate, generally well correlated to nitrate in the present ocean
(Millero, 2006), was chosen as a limiting nutrient to reduce the compu-
tational costs associated with the complexities of nitrogen fixation and
denitrification (Najjar and Orr, 1998). The model uses a Martin power–
law curve (a=−0.9) to describe the vertical particulate organic phos-
phorus flux profile over the full water column. The flux is altered by
scavenged Fe attached to the sinking matter throughout the water col-
umn (Doney et al., 2006).

2.3. Boundary conditions

Boundary conditions for all sensitivity experiments, including the
reference (or control) experiment, were taken from the Kiehl and
Shields (2005) CCSM3 simulation. The solar constant for the
Permian-Triassic boundary is set to 1338 Wm−2, representing a
2.1% decrease from the modern value based upon calculations by
Boothroyd (Caldeira and Kasting, 1992; Winguth et al., 2002). Eccen-
tricity and the vernal equinox were set to zero, resulting in near equal
receipt of solar insolation for both hemispheres (Gibbs et al., 2002).
Earth's obliquity is set to 23.5°, equivalent to the modern value of
the Earth's axial tilt. Greenhouse gas concentrations are taken from
Kiehl and Shields (2005; see also Table 1) and are inferred from
Kidder and Worsley (2004). The fixed land vegetation used in the ex-
periments was adapted from the model simulation by Kiehl and
Shields (2005) and based on paleo-vegetation models of Rees et al.
(1999).

After the addition of the ocean carbon cycle to the 2700-year run by
Kiehl and Shields (2005) with a flat bottom ocean configuration, the
model was integrated for an additional 5300 years and served as the
control experiment. The sensitivity experiments with a mid-ocean
ridge (MOR) and with a sill between the Tethys and Panthalassa
(hereafter named Tethys experiment) were initialized from the control
simulation in year 5007 and integrated for 3000 years, corresponding to
about three times the mean water mass residence time in Panthalassa.

2.4. Land–sea distribution

Land and sea configurations were taken from Kiehl and Shields
(2005) for all experiments. As in the Kiehl and Shields (2005) simula-
tion, the average depth of the ocean near the Permian–Triassic
boundary is assumed to have been comparable with the mean
depth of the present-day oceans and was therefore set to ~4 km. No
changes were made to the control simulation that has a flat-bottom
imate to bathymetric features and implications for the mass extinc-
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Table 2
Globally averaged ocean temperatures (°C).

Surface 200 m 600 m 1100 m 1900 m 2800 m 3800 m

Control 22.66 16.52 10.89 7.16 5.72 5.11 4.85
MOR 22.65 16.47 10.90 7.26 5.82 5.20 4.89
Tethys 22.59 16.36 11.04 7.54 6.10 5.48 5.12

A)
Meridional Overturning Circulation
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ocean configuration (Fig. 1A), while the bathymetry was modified for
the MOR and Tethys experiments (Fig. 1B and C).

The MOR experiment included a mid-ocean ridge that extended
across the Panthalassa Ocean in a general north–south direction
(Fig. 1B). The position of themid-ocean ridgewas based on the assump-
tion that the active subduction zones along the western margin of
Pangea were supplied by a spreading center analogous to the East
Pacific Rise. Like the modern East Pacific Rise, this ancient Panthalassic
spreading center may have been oriented parallel to the subducting
margins that surrounded Pangea. The fact that mid-ocean ridges tend
to be aligned parallel to convergent boundaries has been noted by sev-
eral authors (Forsyth and Uyeda, 1975; Scotese and Rowley, 1985). The
mid-ocean ridge was assumed to be at least 21 million years old and to
have a fast spreading rate of 10 cm yr−1, which is comparable to the
spreading rate of the present East Pacific Rise. The ocean floor was set
at a maximum depth of 4007 m in the model, rendering the crest of
the ridge at a depth of approximately 2800 m in the simulation. The es-
timation was loosely based on the formula from Stein and Stein (1992).
A)

B)

C)

Panthalassa
P

an
g

ea
Paleo-Tethys

Neo-Tethys

NC

SC

SC

NC

Paleo-Tethys

Neo-Tethys

Control

MOR

Tethys

Fig. 1. Late Permian land–sea simulations for: (A) The control experiment, with a flat-
bottom ocean and partially open exchange between the Paleo-Tethys, Neo-Tethys and
Panthalassa Oceans. (B) The MOR experiment, with a mid-ocean ridge in the Pantha-
lassa Ocean. (C) The Tethys experiment, with the addition of sills up to a depth of
200 m located at the eastern region of the Paleo-Tethys between the North China
Block (NC) and South China (SC) section, including the Yangtze and Huanan blocks,
and also in the southern Paleo-Tethys, separating the Paleo-Tethys from the Neo-
Tethys Ocean.

B)

C)

Fig. 2. Meridional overturning circulation in Sv (106 m3 s−1). (A) The control, shaded
areas with negative values represent regions of downwelling and areas in white are re-
gions of upwelling. (B) Change in the MOC between MOR and control simulations. In-
creased downwelling was simulated between 45°N and 60°N due to the addition of the
mid-ocean ridge. Remaining ocean showed either no changes or slight decrease in
overturning circulation. (C) Change in MOC between Tethys and control simulations.
Decline of 0.5 to 1.5 Sv in the MOC was simulated throughout most of the Permian
oceans.
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Potential Temperature (CΟ) at 3800 m
MOR-ControlA)

B) MOR-Control
Vertical Velocity (10-6m s-1) at 3800 m
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However, the exact location of the Late Permian mid-ocean ridge re-
mains uncertain because most of the seafloor has been subducted and
other configurations like a Tethys–Panthalassa ridge-system as tested
in Montenegro et al. (2011) or a tripod-shape may have been plausible.

The presence of a ridge disrupts normal deep-water flow resulting
in internal waves that can lead to diapycnal mixing. The additional
mixing can lead to horizontal density gradients, which can drive sec-
ondary flows (Thurnherr et al., 2011). Restriction of ocean circulation
could conceivably alter the distribution of salinity and dissolved oxy-
gen, as well as other elements. Changes of bathymetry might create
additional mixing and upwelling of water masses and hence increase
biological productivity (Hotinski et al., 2001; Winguth and Maier-
Reimer, 2005). The effects of heat flow from the ridge or sea floor
were neglected in all experiments.

The Tethys experiment included the addition of sills between the
Paleo-Tethys and Panthalassa Oceans as well as the Paleo-Tethys and
Neo-Tethys (without amid-ocean ridge; Fig. 1C). The shallow sills effec-
tively separated the Paleo-Tethys Ocean from the Panthalassa, restrict-
ing the water exchange between the two oceans below a depth of
200 m, whereas a deep passage between these oceans was present in
the control and the MOR experiments. The modifications are based
upon configurations from Scotese and Langford (1995). Paleomagnetic
and geochronological data has been studied by many authors (e.g.
Scotese and Langford, 1995; Zhao et al., 1996; Sengör and Atayman,
2009) and suggests that the collision of North and South China began
0.75 - 3.8 kmNorthern HemisphereA)
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Fig. 3. Temperature–salinity diagram for Late Permian climate simulations with CCSM3
for the equator (solid line), 30° (long dash), and 60° (short dash) for the MOR experi-
ment (red), Tethys experiment (blue) and the flat-bottom ocean floor control experi-
ment (black). A) Northern Hemisphere and B) Southern Hemisphere. Dots denote
the depth in km. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 4. At a depth of 3800 m, the difference between the MOR and control experiments
in A) potential temperature (°C) and B) vertical velocity (10−6 m s−1).

A)
οC

psuB)

MOR-Control

MOR-Control

Fig. 5. Difference in global mean zonal averages between the MOR and control exper-
iments in A) potential temperature (°C) and B) salinity (psu).

Please cite this article as: Osen, A.K., et al., Sensitivity of Late Permian climate to bathymetric features and implications for the mass extinc-
tion, Glob. Planet. Change (2012), doi:10.1016/j.gloplacha.2012.01.011

http://dx.doi.org/10.1016/j.gloplacha.2012.01.011


A)

5A.K. Osen et al. / Global and Planetary Change xxx (2012) xxx–xxx
near the end of the Permian, but that these landmasses had not become
completely sutured until the Mesozoic. However, there is no consensus
on the extent of the oceanic passageway between the two blocks during
the Late Permian. Results fromMeng and Zhang (1999) proposed that a
Paleo-Tethyan Ocean between the North and South China blocks
existed and that subduction in this region may not have occurred
until the Early Triassic. In contrast, Sengör and Atayman (2009) sug-
gested the presence of a continental shelf basin (0–200 m) and possibly
a land bridge, based on additionalflora and fauna evidence, and that the
isolation of the Paleo-Tethys might have contributed to the onset of
oxygen-poor conditions in the region.

3. Results

3.1. Ocean circulation and water mass distribution

In the following, we discuss the physical and geochemical results
of the MOR experiment and the Tethys experiment as compared
to the control simulation. After 3000 years of model integration, a
100-year mean global average was computed for all three sensitivity
experiments. The average sea surface temperature for all three sensi-
tivity experiments was ~23 °C, while the temperature simulated for
the deepest waters was approximately 5 °C (Table 2). Sea surface
temperatures in the equatorial region were in the range of 26 °C to
32 °C for all experiments, while high-latitude (75°–90°) surface tem-
peratures were in the range of 6 °C to 9 °C.

The major simulated sources of Late Permian deep-water masses
are located at ~30° and in the polar region in both hemispheres
A)

B)

Potential Temperature

Salinity

Tethys-Control

Tethys-Control

Fig. 6. Longitudinal section of the Tethys region about the equator of the difference be-
tween the Tethys and control experiments in A) potential temperature (°C) and B) salinity
(psu).
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(Figs. 2 and 3). The polar water mass is characterized by low temper-
ature (4–6 °C) and salinity (34.6–34.8 psu), whereas the subtropical
water mass can be identified by warmer, more saline characteristics
with temperatures in the range of 14–16 °C and salinities of 35.3–
35.5 psu. The latter is comparable with modern arid marginal seas
like the Mediterranean Sea or the Red Sea. Away from the subtropical
water formation areas near the east coast of Pangea, the thermocline
is deeper than in the tropics because of the cooler sea surface temper-
ature associated with the intertropical convergence zone and due to
equatorial upwelling. In contrast to the present day, the deep-sea cir-
culation is more symmetrical about the equator with a transport of
~8–10 Sv at 30° (Fig. 2A).

Differences in global large-scale ocean circulation patterns be-
tween the mid-ocean ridge and the flat-bottom simulations were
small (as inferred from Figs. 2 and 3), but regional changes did
occur, for example near 45°N, where deep-water transport increased
by more than 4 Sv (Fig. 2B). Regional anomalies in temperature of
B)

C)

Fig. 7. A) Productivity in the control experiment (in mol C m−2 yr−1), B) change in
productivity between MOR and control experiments and C) difference in productivity
in the Tethys region between the Tethys and control runs.

imate to bathymetric features and implications for the mass extinc-
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Table 3
Global particulate organic carbon export production.

Experiment name 100 year average
(Pg C yr−1)

Percent change

Control 8.03 –

MOR 8.43 4.98
Tethys 7.78 −3.11
Modern 6.73 −16.19
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b2 °C and in salinity of b0.3 psu in the shallow-to-intermediate water
masses were caused by topographic steering and enhanced vertical
mixing due to the mid-ocean ridge, which acted like a barrier. How-
ever, changes in deep-sea temperatures (b0.5 °C; Fig. 4A) and
salinities (not shown) were insignificant and confined to the region
east of the mid-ocean ridge. Below 2000 m, the vertical velocities in-
creased (Fig. 4B) due to topographic steering of the currents and in-
creased mixing of the deep sea caused by the mid-ocean ridge.
Circulation patterns within the deepest water masses were altered
by the mid-ocean ridge, but these changes did not have a significant
impact on the global mean temperature and salinity distribution, as
shown in Fig. 5.

Temperature and salinity changes in the Tethys sensitivity exper-
iment were largely confined to the Paleo-Tethys Ocean basin located
about the equator. The exchange between Panthalassa and the Paleo-
Tethys was disrupted by the reduction of the passage depth to 200 m
that prevented the inflow of cooler deep-sea water masses from the
Panthalassa to the Paleo-Tethys Ocean. Due to the stronger influence
of subtropical deepwater formation near Northern China, the temper-
ature and salinity of intermediate water masses below 1000 m near
the equator rose by up to 6 °C (Fig. 6A) and 0.9 psu (Fig. 6B), respec-
tively. The isolation of the Paleo-Tethys Ocean allows for stratification
of the water masses and is comparable to the layering in the present-
day Mediterranean Sea. The distribution of water masses and the me-
ridional overturning circulation in the Panthalassa and Neo-Tethys
Oceans were not significantly affected by the sill (Fig. 2C).
Control
Ideal Age (years) at 3800 m

C)

A)

MOR-Control
Ideal Age (years) at 3800 m

B)

D)

Fig. 8. Simulations for the control at 3800 m for (A) ideal age of water masses in years and
experiments at 3800 m for C) ideal age of water masses in years and D) dissolved oxygen c

Please cite this article as: Osen, A.K., et al., Sensitivity of Late Permian cl
tion, Glob. Planet. Change (2012), doi:10.1016/j.gloplacha.2012.01.011
3.2. Productivity, dissolved oxygen and ideal age of water masses

3.2.1. Productivity
The simulated export production depends on macro- and micro-

nutrient availability, temperature, and light availability. Significant
nutrient uptake occurs in upwelling areas and zones of a deep
mixed-layer depth. For example, in the control experiment produc-
tion is greatest in the coastal regions and near the equator (Fig. 7A).
The simulated Late Permian productivity in the control simulation is
16.19% lower than the modern productivity simulated by CCSM3
(Table 3). Compared to the control simulation, the MOR simulation
increased by 4.98% (Table 3 and Fig. 7B) due to enhanced vertical
mixing (Fig. 4B). The greatest gains in productivity occurred between
15°N and 50°N in the Panthalassa Ocean off the coast of Pangea and
near the northwestern costal region of Pangea between 60°N and
80°N (Fig. 7B).

The average global export production decreased by 3.11% in the
Tethys experiment compared to the control run (Table 3). However,
the addition of the sills to the Tethys led to increased upwelling and
enhanced productivity in the southern region of the Paleo-Tethys
(Fig. 7C).

3.2.2. Dissolved oxygen and ideal age of water masses
The ideal age of the water masses (Fig. 8A) acts as a passive circu-

lation tracer, with low age values representing a well-mixed environ-
ment and high values a sluggish circulation with longer residence
times in the deep-sea. The distribution of dissolved oxygen concen-
trations in the deep-sea generally follows the distribution of the ide-
alized age tracer (Fig. 8B), but also depends on the local productivity
(Fig. 7A).

Enhanced mixing caused by the mid-ocean ridge increased dis-
solved oxygen concentrations within deep waters. Upwelling in re-
gions east of the mid-ocean ridge (Fig. 4B) is reflected in the ideal
age of the water masses in the western Panthalassa (Fig. 8C) and con-
tributed to increased dissolved oxygen concentrations of up to
50.0 μmol L−1 at 3800 m (Fig. 8D).
Control
Dissolved Oxygen (µmol L-1) at 3800 m

MOR-Control
Dissolved Oxygen (µmol L-1) at 3800 m

(B) dissolved oxygen concentration in μmol L−1. Difference between MOR and control
oncentration in μmol L−1.

imate to bathymetric features and implications for the mass extinc-
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Dissolved OxygenTethys µmol L-1

Dissolved OxygenControl µmol L-1

A)

B)

at 500 m

at 500 m

Fig. 9. Dissolved oxygen concentrations in the Tethys region at 500 m for A) Tethys and
B) control experiments.
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Differences in dissolved oxygen between the Tethys simulationwith
sills and the control simulation with a deep passage are related to the
warming anomaly (Fig. 6A) and associated stratification as well as pos-
itive productivity fluctuation along the equatorial region of the
3300 mA)

Fig. 10. Ideal age (years) of water masses and horizontal velocities (cm
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southeastern Paleo-Tethys (Fig. 7C). At an intermediate depth of
500 m, oxygen gradients increased remarkably with the closure of the
deeper Paleo-Tethys. An oxygenminimum zone with dissolved oxygen
concentrations as low as 25 μmol L−1 developed along the eastern
shores of the Paleo-Tethys (Fig. 9A) that was not simulated in the con-
trol experiment (Fig. 9B) because of slightly enhanced equatorial pro-
ductivity along with the blocking of well-ventilated water masses
from Panthalassa and from the Neo-Tethys. The idealized age of water
masses at 3300 m for the control experiment ranged from 1100 to
1500 years in the Paleo-Tethys basin (Fig. 10A). The Tethys experiment
revealed an increase in stagnation with the deep sea increasing in
age by 1700 to 2000 years compared to the control experiment, with
the Paleo-Tethys having an absolute ideal age of approximately
3100 years (Fig. 10B). Horizontal velocities within the Paleo-Tethys
basin at 3300 m decreased from the control experiment (Fig. 10A)
and were less than 0.05 cm s−1 (Fig. 10B). The sluggish circulation
coupled with the lack of deep-water exchange between the Paleo-
Tethys and Panthalassa as well as increased oxygen demand from en-
hanced productivity resulted in greatly reduced oxygen concentrations
within the Paleo-Tethys (Fig. 11) and to a lesser extent within the
Panthalassa (not shown). The equatorial cross-section of dissolved oxy-
gen concentrations within the Paleo-Tethys suggests that the dissolved
oxygen concentration decreased by more than 120 μmol L−1 (Fig. 11),
yielding dysoxic conditions below 1800 m (Fig. 11B).

4. Discussion

The addition of the mid-ocean ridge did not change the meridional
overturning circulation significantly (Fig. 3.) However, as shown in
Fig. 4B, upwelling in the ultimate vicinity of the ridge increased,
which reduced the ideal age of water masses and increased dissolved
oxygen concentrations due to a slightly higher influence of warm and
saline subtropical water masses in areas located east of the ridge. The
deep sea at 3800 m depth remained well oxygenated in the MOR sim-
ulation (Fig. 8B and D). The control and MOR experiments did not
simulate anoxic conditions in the Tethys region where the majority
of euxinic to anoxic sedimentary evidence from the Permian-
Triassic boundary has been identified (Sengör and Atayman, 2009).
Furthermore, deep-sea anoxia was not simulated in the Panthalassa
and Tethys oceans with the present-day nutrient inventory, contrary
to suggestions by Hotinski et al. (2001) and by Kiehl and Shields
(2005) who inferred anoxia from higher-than-present-day water
mass stratification during the Late Permian in their CCSM3 simulation
B) 3300 m

s−1) at 3300 m for A) the control and B) the Tethys experiments.
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Fig. 11. Longitudinal section of the Tethys region about the equator of dissolved oxygen
concentrations (μmol L−1) for A) control and B) Tethys experiments.
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results without an ocean carbon cycle model. However, the findings
of this study that the deep Panthalassa and Tethys are not anoxic
(with dissolved oxygen concentrations >120 μmol L−1) are consis-
tent with Montenegro et al. (2011) who conducted sensitivity exper-
iments using an earth system model of intermediate complexity
featuring 2 mid-ocean ridge configurations (one in which a straight
ridge was placed directly through the middle of the Panthalassa
Ocean in a north–south direction and a second in which the mid-
ocean ridge traverses through the Paleo-Tethys and becomes a U-
shaped ridge within the Panthalassa). Additionally, Meyer and Kump
(2008), Meyer et al. (2008), and Winguth and Winguth (2012) sug-
gested a high sensitivity of the deep-sea oxygen concentration to
changes in the nutrient inventory and enhanced biological pump.

The closure of the Paleo-Tethys region in the Tethys sensitivity ex-
periment by a sill generated stratified water masses within the basin,
associated with an increase in the ideal age of deep-water masses,
and led to a decline in dissolved oxygen concentrations within the
Paleo-Tethys basin to dysoxic conditions (Fig. 11B). Sengör and
Atayman (2009) suggest that a combination of atmospheric, litho-
spheric and biospheric changes in the Paleo-Tethys contributed to
the anoxic conditions in the latest Permian. Dysoxic conditions
along the eastern inner shores of the Tethys region within the oxygen
minimum zone are supported by evidence of Chlorobiaceae (green
sulfur bacteria), a biomarker indicator of anoxygenic photosynthesis,
in the Meishan section, South China (Grice et al., 2005; Cao et al.,
2009) as well as pyrite formation (Jiang et al., 2006). Indicators
of an oxygen-restricted environment are also present in Northern
Xinjang, China (Cao et al., 2008). Permian–Triassic sections in South
China suggest an increase in salinity that may have been induced by
Please cite this article as: Osen, A.K., et al., Sensitivity of Late Permian cl
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rising temperatures and evaporation rates (Chai et al., 1992), which
is in agreement with the Tethys sensitivity experiment. Dysoxic con-
ditions were not modeled for the western shores of the Paleo-Tethys
region, conflicting with geological evidence inferring anoxia in
the Siusi section of Northern Italy (Wignall and Twitchett, 1996;
Newton et al., 2004); however, dysoxic conditions were simulated
in the deep-sea. The difference could be related to the coarse resolu-
tion of the model not resolving coastal process, or uncertainties in the
prediction of coastal winds influencing the buoyancy forcing and
Ekman-upwelling.

All sensitivity experiments do have some limitations that are sum-
marized in the following: (1) Low resolution was used in all experi-
ments that limits the representation of bathymetric features such as
seamounts, small islands or trencheswhich could further influence oce-
anic circulation. Topographic roughness of mid-ocean ridges can in-
crease the strength of internal tides (St. Laurent and Garrett, 2002),
which cannot be resolved using low-resolution models. (2) The sulfur
cycle was not included in any of the simulations. With the long-term
eruptions of the Siberian Traps occurring during the Late Permian,
large amounts of sulfur dioxide would have been released into the at-
mosphere (Reichow et al., 2002; Heydari et al., 2008; Saunders and
Reichow, 2009) that would have been converted to sulfuric acid and in-
creased weathering and erosion rates. (3) Sediment and silicate cycles
were not included in the experiments, which may have influenced
productivity and ocean chemistry. Geological evidence suggests that
an increase in erosion may have played a role in the deterioration of
oceanic conditions (Wang and Visscher, 2007; Algeo and Twitchett,
2010; Algeo et al., 2011).

5. Conclusions

The placement of a mid-ocean ridge within Panthalassa had only a
minor impact on the global water mass distribution and oceanic con-
ditions. Thus the flat-bottom approach in ocean models for the Late
Permian remains a valid approximation. Increased upwelling in the
vicinity of the ridge due to topographic steering redirected flows
about the ridge but did not significantly change temperature and sa-
linity distributions within the Panthalassa.

The introduction of a sill between the North and South China
blocks induced a decrease of circulation and enhanced stratification
within the Paleo-Tethys, led to the development of dysoxic conditions
in the region. Global currents and meridional overturning circulation
were impacted to a much smaller extent. For an isolated Paleo-Tethys,
deteriorated environmental conditions with warm temperatures and
low oxygen would have contributed to the regional extinction of spe-
cies; however, these changes would probably not have been sufficient
to explain the global marine mass extinction.
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