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Permian–Triassic paleoceanography
1. Introduction

This theme issue of Global and Planetary Change is devoted to stud-
ies of “Permian–Triassic paleoceanography.” It consists of 14 papers
that advance our understanding of marine environmental conditions
during the Permian–Triassic boundary (PTB) crisis and its aftermath
(Table 1).

The end-Permian mass extinction (EPME) at 252.28 Ma (Shen et
al., 2011) was the largest biotic catastrophe of the Phanerozoic,
resulting in the disappearance of ~90% of skeletonized marine spe-
cies (Erwin, 1994; Bambach et al., 2004; Alroy et al., 2008; Clapham
et al., 2009) and a transition from the ‘Paleozoic Fauna’ to the ‘Mod-
ern Fauna’ (Sepkoski, 1982, 2002). The biocrisis was broad, resulting
in major losses of diversity among radiolarians (Feng et al., 2007), fo-
raminifera (Groves and Altiner, 2005), corals (Flügel, 2002), brachio-
pods (Chen et al., 2005a,b), bryozoans (Powers and Pachut, 2008),
echinoderms (Twitchett and Oji, 2005; Chen and McNamara,
2006), conodonts (Orchard, 2007; Stanley, 2009), and ammonoids
(McGowan, 2004; Brayard et al., 2006, 2009; Stanley, 2009), among
other clades. Early Triassic marine communities were characterized
by (1) a lack of metazoan reefs, creating a ‘reef gap’ until the Middle
Triassic (Flügel, 2002; Pruss and Bottjer, 2005; Marenco et al., 2012);
(2) small size (‘Lilliput effect’) among benthic invertebrates (Fraiser
and Bottjer, 2004; Payne, 2005; Twitchett, 2007; Metcalfe et al.,
2011), and (3) reduced ecological complexity, as seen in limited
tiering, empty megaguilds, and dominance of a few taxa (Fraiser
and Bottjer, 2005; Bottjer et al., 2008). Although some nektic groups
recovered rapidly (Hallam and Wignall, 1997; Brayard et al., 2009;
Stanley, 2009), biodiversity remained low in most clades during
the Early Triassic, and the general recovery of benthic marine ecosys-
tems was delayed by ~5 Myr (Erwin, 1994; Schubert and Bottjer,
1995; Fraiser and Bottjer, 2004, 2007). The papers in this theme
issue explore changes in paleoceanographic conditions during and
following the end-Permian crisis, their significance for the mass
extinction event and the subsequent delay in recovery of marine
ecosystems, and their relationship to contemporaneous global
climate change.

2. Permian–Triassic paleoceanographic changes

Oneof themost important recent discoveries in the field of Permian–
Triassic paleoceanography is an extreme rise in tropical sea-surface
temperatures (SSTs) during the latest Permian to Early Triassic, with
peak temperatures up to 40 °C, or >15 °C above pre-crisis SSTs
(Joachimski et al., 2012; Romano et al., 2012; Sun et al., 2012). Such ex-
treme warming is likely to have been the primary cause of contempora-
neous oceanographic changes, including intensified stratification of the
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oceanicwater columnand a sharp reduction in global overturning circu-
lation (Horacek et al., 2007; Algeo et al., 2010, 2011a; Winguth and
Winguth, 2012). Song et al. (2013–this volume) have developed an in-
novative method of quantifying the degree of oceanic stratification dur-
ing the PTB crisis interval. They analyzed vertical gradients in marine
carbonate δ13C (Δδ13C) in a series of carbonate sections from South
China representing water depths ranging from b50 m to ~500 m. This
analysis revealed that Δδ13C increased from 2‰ in the Late Permian to
a maximum of 8.5‰ in the earliest Triassic, fluctuated between 3.5‰
and 7.2‰ during the mid-Griesbachian to Smithian, and then declined
rapidly back to ~2‰ during the Spathian. Whereas pre- and post-crisis
vertical δ13C gradients are similar to those for the modern ocean
(0–3‰; Kroopnick, 1985), gradients >3‰ are found today only in
strongly stratified restricted marine basins such as the Black Sea and
Framvaren Fjord. The Song et al. study concluded that stratification
within the Early Triassic oceanic thermocline was roughly as intense as
that within the modern Black Sea (i.e., with a vertical density gradient
of at least 4σt). Although modeling studies have argued that prolonged
stagnation of deep-ocean circulation is not possible (e.g., Hotinski et
al., 2001; Kiehl and Shields, 2005), it is possible that these studies have
not yet considered sufficiently extreme climatic changes to induce in-
tense stagnation.

Extreme warming and oceanic stratification during the PTB crisis
had other important oceanographic consequences, including proba-
ble changes in marine redox conditions and productivity, the global
carbon cycle, and the seawater sulfur cycle. Oceanic anoxia is
thought to have increased greatly during the latest Permian to
Early Triassic (Wignall and Twitchett, 1996, 2002; Isozaki, 1997)
with expansion concentrated at intermediate water depths, i.e.,
within the oxygen-minimum zone (Algeo et al., 2010, 2011a;
Winguth andWinguth, 2012). Upward movement of the chemocline
(i.e., the top of the oxygen-minimum zone) was not geologically in-
stantaneous but progressed over an interval of ~100 kyr during the
latest Permian, decimating deepwater radiolarian and sponge faunas
in advance of the main end-Permian extinction event (Wignall and
Newton, 2003; Algeo et al., 2012; Feng and Algeo, 2012; Shen et al.,
2012a). However, environmental changes within Late Permian
oxygen-minimum zones were complex, as shown by an analysis of
an upwelling system along the northwestern Pangean margin
(Opal Creek, Alberta, western Canada) by Schoepfer et al.
(2013–this volume). This upwelling system was stable and highly
productive during the Middle and Late Permian but experienced a
rapid expansion of anoxia during the EPME, after which upwelling
was largely terminated and productivity fell to low levels. This pat-
tern is consistent with the results of a recent study of uranium iso-
topes, a proxy for global marine redox conditions, that showed that
a ~6× expansion of anoxic sinks for uranium at the time of the
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Table 1
Articles in the “Permian–Triassic paleoceanography” theme issue.

Article Location Age range Type of study

1 Song et al. South China Chang–
Scythian

C-isotope
chemostratigraphy

2 Schoepfer et al. Western
Canada

Permian–
Induan

Inorganic
chemostratigraphy

3 Luo et al. South China Chang–
Griesbach

Organic geochemistry

4 Algeo et al. Global Chang–
Griesbach

Organic carbon fluxes

5 Takahashi et al. Japan Chang–
Scythian

Inorganic
chemostratigraphy

6 Heydari et al. Iran Wujiaping–
Induan

Carbonate sedimentology

7 Woods Western
U.S.A.

Olenekian Carbonate sedimentology

8 Li et al. South China Chang–Induan Carbonate sedimentology
9 Shen et al. South China Chang–

Griesbach
Inorganic
chemostratigraphy

10 Zhao et al. South China Chang–
Griesbach

Inorganic
chemostratigraphy

11 Saito et al. South China Scythian Organic geochemistry
12 Winguth and

Winguth
Global Chang–

Griesbach
Paleoclimate modeling

13 Osen et al. Global Changhsingian Paleoclimate modeling
14 Saitoh et al. South China Guad–

Wujiaping
Carbonate sediments,
paleoecology
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EPME (Brennecka et al., 2011). Both results are consistent with
strong sea-surface warming and intensified oceanic stratification
during the end-Permian crisis.

Changes in oceanic circulation and redox conditions are likely to
have had major consequences for Early Triassic marine plankton com-
munities and primary productivity (Payne and van de Schootbrugge,
2007). Luo et al. (2013–submitted for publication) showed that changes
in vertical gradients in organic δ13C in Early Triassic seaswere related to
a shift in dominance from eukaryotic marine algae to bacteria, e.g.,
green sulfur bacteria in deepwater environments (Grice et al., 2005;
Hays et al., 2007; Cao et al., 2009) and diazotrophic cyanobacteria in
shallow-water environments (Xie et al., 2005, 2007; Luo et al., 2011).
Biomarker studies were used to evaluate changes in shallow-marine
algal–microbial communities (Chen et al., 2011), and this approach
has been applied to the Cili section (Hubei Province, South China) in
the contribution of Luo et al. (2013–this volume). The latter study re-
vealed a complex post-disaster community in latest Permian
microbialite beds consisting, in addition to cyanobacteria, of anaerobic
bacteria, archaea, and/or acritarchs. The transformative changes in
planktic and benthic algal–microbial communities documented in
these studies suggest that major changes in marine productivity may
have occurred during the PTB crisis. Such productivity changes were in-
vestigated byAlgeo et al. (2013–this volume),whodeveloped a series of
transfer functions to back-calculate the sinking flux of organic carbon to
the sediment–water interface and,more tentatively, to primary produc-
tion in the ocean-surface layer. These calculations suggest that marine
productivity did not vary in any systematic manner globally, but that
certain regions were subject to major changes during the crisis—most
notably, a crash of marine productivity across the South China craton
that persisted for at least ~100 kyr into the Early Triassic.

Changes in oceanic circulation and redox conditions during the crisis
interval influenced the global carbon and seawater sulfur cycles. At the
EPME, marine carbonate δ13C profiles exhibit a pronounced 2 to 8‰
negative shift, the source of which has been attributed to inputs of iso-
topically light carbon from volcanic CO2 (Payne and Kump, 2007), sea-
floor or coalfield methane (Krull et al., 2004; Retallack and Jahren,
2008; Shen et al., 2012b), or soil organic matter (Algeo et al., 2011b).
This C-isotopic shift was accompanied by a sharp shift toward more
negative pyrite δ34S values in Panthalassic deep-sea sediments, as doc-
umented by Takahashi et al. (2013–this volume). The latter shift reflects
an increased sinking flux of framboidal pyrite from the oceanic oxygen-
minimum zone (Algeo et al., 2010, 2011a), as pyrite that is ‘syngenetic’
(i.e., formed within the water column) exhibits greater S-isotopic frac-
tionation as a consequence of bacterial sulfate reduction within a
sulfate-unlimited system (i.e., seawater;Wilkin et al., 1996, 1997). Dur-
ing the Early Triassic, both the carbon and sulfur cycles were strongly
perturbed, as shown by large fluctuations (>10‰) in the marine car-
bonate δ13C and seawater sulfate δ34S records (Newton et al., 2004;
Payne et al., 2004; Tong et al., 2007). A recent study (Song et al., in
review) demonstrates positive and nearly synchronous excursions in
the carbonate δ13C and carbonate-associated sulfate (CAS) δ34S records
at this time, a pattern reflecting coordinated changes in rates of marine
productivity, organic carbon sinking, and pyrite burial. Variation in
these oceanic proxies was probably driven by sea-surface temperature
changes: warming episodes led to a weakening of overturning circula-
tion, reducing upwelling of nutrients to the ocean-surface layer and lim-
iting primary productivity. Lower productivity led in turn to smaller
organic carbon sinking fluxes, reduced rates of bacterial sulfate reduc-
tion and pyrite formation, and an isotopically lighter seawater sulfate
pool. The oceanic C and S cycles remained closely coupled in this man-
ner throughout the Early Triassic, a pattern that broke downonly during
the Spathian (Song et al., in review).

Latest Permian to Early Triassic shallow-marine facies are charac-
terized by a variety of unusual carbonate deposits. Features that have
been documented include seafloor crystal fans, subtidal stromatolite
bioherms, and wrinkle structures (Schubert and Bottjer, 1992; Baud
et al., 1997; Kershaw et al., 1999; Woods et al., 1999, 2007; Pruss
and Bottjer, 2004; Pruss et al., 2006; Woods and Baud, 2008; Mata
and Bottjer, 2009). Collectively, these features have been character-
ized as ‘anachronistic facies’ because their previous period of abun-
dant occurrence was during the Late Proterozoic, about 300 Myr
prior to the PTB (Sepkoski et al., 1991; Baud et al., 2007). Several
studies in the present volume provide documentation of features of
this type. Heydari et al. (2013–this volume) note the presence of
large seafloor crystal fans in the PTB section at Shareza, Iran, which
they link to major changes in the chemistry of tropical seawater and
the mineralogy of marine carbonate precipitates in response to con-
temporaneous climate change. Woods (2013–this volume) describes
micritic ooids and cortoids (grains with constructive micritic enve-
lopes) in the Spathian Virgin Limestone from Nevada (western
U.S.A.), and Li et al. (2013–this volume) document giant ooids of
Induan age from Moyang (Guizhou Province, South China) that are
of fully marine origin despite their large size (2–12 mm diameter).
In both studies, ooid growth is thought to have been mediated by
an abundance of surficial microbes resulting from high seawater nu-
trient concentrations. For the Moyang ooids, evidence of microbial in-
fluence is provided by the presence of tiny carbonate fluorapatite
(CFA) crystals along cortical laminae, which are inferred to represent
microbially adsorbed P. The Li et al. paper also includes a tabulation of
global occurrences of giant ooids during the Early Triassic, the preva-
lence of which is consistent with contemporaneous global warming
(Joachimski et al., 2012; Romano et al., 2012; Sun et al., 2012) and a
consequent increase in the carbonate saturation levels of global sea-
water (Zeebe and Wolf-Gladrow, 2001).

The cause of extreme warming during the Early Triassic is thought
to be the eruption of the Siberian Traps (Wignall, 2007), e.g., emis-
sions of volcanic CO2 and/or thermogenic methane from magmatic
intrusions into the West Siberian Coal Basin (Payne and Kump,
2007; Retallack and Jahren, 2008). Although radiometric ages for
the Siberian Traps (~252–250 Ma; Campbell et al., 1992; Renne et
al., 1995; Reichow et al., 2009) are effectively coeval with the end-
Permian crisis within present dating uncertainties (Mundil et al.,
2010), few if any studies have presented evidence of a direct link be-
tween these eruptions and coeval biotic or climate change. Two stud-
ies in the present volume attempt to address this deficiency. Shen et
al. (2013–this volume) investigated the relationship of volcanic ash
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layers to marine environmental changes in the deepwater Xinmin
section (Guizhou Province, South China). They determined that re-
current episodes of volcanic ash deposition during the pre-crisis
Late Permian had harmful effects on the local marine environment,
and that a massive increase in the flux of volcanic ash coincided
with the EPME. In another study, Shen et al. (in review) demonstrate
a link between volcanic ash deposition and concurrent changes in the
composition of the marine microplankton community, especially
acritarchs and radiolarians, in two South China PTB sections (Xinmin
and Shangsi). Zhao et al. (2013–this volume) demonstrated a strong
volcanic influence on shallow-marine PTB sections at Meishan D
(Zhejiang Province) and Daxiakou (Hubei Province) through another
approach—analysis of rare earth elements (REEs) in conodont apatite.
Although they sought to recover a seawater REE signal, a careful anal-
ysis of elemental patterns revealed that the bulk of the REEs in all
samples were derived from terrigenous material, probably the clay
minerals that are present in low concentrations in both sections.
REE profiles revealed a large compositional shift at the level of the
EPME, with post-boundary samples showing substantially elevated
total REE concentrations, low Eu/Eu* and La/Yb ratios, and high Th/
La ratios. These characteristics are consistent with a significant volca-
nic component in the clay fraction (cf. Shen et al., 2012a, 2012b,
2013a), suggesting that volcanic ashfall (or erosion of ash deposits
from land areas) markedly influenced the composition of marine
sediments for an extended (>105-yr) interval following the EPME. Al-
though these studies provide evidence of volcanic influences on
latest Permian marine biotas and environments, it is not yet known con-
clusively whether the ash layers found in Upper Permian–Lower Triassic
strata in the South China region were sourced from the Siberian Traps,
as hypothesized by Shen et al. (2012b, 2013a–this volume).

The full recovery of marine ecosystems following the PTB crisis
was remarkably slow, extending over the ~5-Myr duration of the
Early Triassic (Bottjer et al., 2008; Song et al., 2011). One factor con-
tributing to the slowness of recovery may have been the magnitude
of the mass extinction, necessitating an unusually long post-crisis
interval for the evolution of new taxa and reintegration of the marine
ecosystem (Erwin, 2001, 2007; Chen and Benton, 2012). Another fac-
tor may have been repeated environmental perturbations during the
Early Triassic (Xie et al., 2005, 2007; Retallack et al., 2011; Yin et al.,
2012), possibly linked to multiple eruptive phases of the Siberian
Traps (Song et al., in review). However, it is now clear that Early
Triassic marine environments were subject to persistently extreme
conditions, especially strongly elevated sea-surface temperatures,
from the Griesbachian through the Smithian (Romano et al., 2012;
Sun et al., 2012). Significant seawater cooling began only in the
Early Spathian, leading to a reduction in the intensity of oceanic
stratification (Song et al., 2013–this volume), enhanced overturning
circulation and nutrient upwelling, and a final, brief episode of
productivity-driven marine anoxia (Galfetti et al., 2007, 2008; Song
et al., in review). Following the earliest Spathian cooling event, both
the global carbon and seawater sulfur cycles stabilized (Payne et al.,
2004; Tong et al., 2007; Song et al., in review). A general amelioration
of marine environmental conditions led to a strong recovery among
many clades of marine invertebrates during the remainder of the
Spathian (Brayard et al., 2006, 2009; Bottjer et al., 2008; Chen and
Benton, 2012). Recovery of terrestrial ecosystems was under way
during the same interval as herbaceous lycopsids and bryophytes
that had dominated terrestrial floras since the EPME were replaced
by woody gymnosperms (Looy et al., 1999; Herrman et al., 2011).
The article by Saito et al. (2013–this volume) documents the same
general pattern of terrestrial floral change for South China as previ-
ously reported from Greenland and Pakistan, providing further evi-
dence that such changes were of global extent.

Several articles in this theme issue explore Permian–Triassic
paleoceanographic conditions on the basis of climate model simula-
tions. The study by Winguth and Winguth (2013–this volume)
reveals a high variability in monsoonal precipitation and associated
fluctuations in river runoff and equatorial upwelling in response to
precessional extremes, leading to significant variations in the export
of carbon from the euphotic zone and hence reduction in dissolved
oxygen concentrations in subsurface layers. These findings are in
agreement with the decimation of the radiolarian zooplankton com-
munity, potentially in the oxygen minimum zone, as inferred from
the Chinese and Japanese marine sections (Isozaki, 1997; Algeo et
al., 2010, 2011a; Shen et al., 2012a; Feng and Algeo, 2012). Strong
changes in river run-off linked to precipitation oscillations possibly
led to a high variability in the nutrient supply to the Tethys Ocean,
thus affecting regional productivity and oxygen distribution. The
presence of a mid-ocean ridge in the Panthalassa enhanced vertical
mixing and topographic steering of currents near the ridge axis, as
shown by Osen et al. (2013–this volume). The oxygen contrast
between deep-sea basins that are separated by mid-ocean ridge
appears small due to enhanced vertical mixing. Changes in sill height
between the deep Paleo-Tethys and Panthalassa during the Late
Permian to Early Triassic could have led to environmental changes
within the Paleo-Tethys. A rise in sill height would have led to en-
hanced stratification, and the associated reduced dissolved oxygen
concentration of the water masses to dysoxic or near-anoxic condi-
tions below 1800 m, thereby contributing to the regional extinction
of species at the EPME.

In summary, the scientific contributions to the present theme issue
provide new insights regarding paleoceanographic changes during the
end-Permianmass extinction and its aftermath. Collectively, these stud-
ies provide additional support for Siberian Trapmagmatism as both the
trigger for the EPME and the main cause of extreme environmental
conditions that persisted for ~2 Myr thereafter and that significantly
delayed recovery of marine ecosystems. Although a largely coherent
picture of the PTB crisis has begun to emerge from these diverse studies,
it should benoted that somefindings remain ‘discordant’ anddifficult to
accommodate within this picture. First, the EPME was preceded by a
second-order mass extinction within the Middle Permian (Stanley and
Yang, 1994; Isozaki, 2009; Stanley, 2009; Bond et al., 2010), probably
in response to the eruption of the Emeishan Large Igneous Province in
southwestern China (Zhou et al., 2002). This eventmay havehad ocean-
ographic effects that were similar to, albeit less intense than, those at
the PTB (Saitoh et al., 2013–this volume). The significance of this
event as a precursor to the EPME, possibly ‘setting the stage’ for the
end-Permian biocrisis, requires further investigation. Second, recent re-
ports from the Guryul Ravine PTB section of northern India of a possible
extraterrestrial sediment fraction (Brookfield et al., 2010) and of
seismite and tsunamite beds (Brookfield et al., in revision) will need
careful assessment. Earlier reports of chondritic meteorite materials
linked to an extraterrestrial impact (Becker et al., 2001, 2004; Basu et
al., 2003) were largely discredited (Farley et al., 2005; Müller et al.,
2005), but it is not impossible that a bolide impact around the time of
the EPME had regional effects on the northern Gondwanan margin.
However, the timing of such an event in relation to the EPME would
represent a major coincidence, unless the eruption of the Siberian
Traps themselves or the carbon release from West Siberian coal beds
was triggered by the impact. These and similar issues will require
further investigations.
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